Wraz z premierą Gemini 2.0 pod koniec 2024 r. wprowadziliśmy nowy zestaw bibliotek o nazwie Google GenAI SDK. Zapewnia ona większy komfort pracy deweloperom dzięki zaktualizowanej architekturze klienta i ułatwia przejście między procesami deweloperskimi a procesami w firmach.
Pakiet Google GenAI SDK jest teraz ogólnodostępny na wszystkich obsługiwanych platformach. Jeśli używasz jednej z naszych starszych bibliotek, zdecydowanie zalecamy migrację.
Ten przewodnik zawiera przykłady kodu przed i po migracji, które pomogą Ci zacząć.
Instalacja
Przed
Python
pip install -U -q "google-generativeai"
JavaScript
npm install @google/generative-ai
Przeczytaj
go get github.com/google/generative-ai-go
Po
Python
pip install -U -q "google-genai"
JavaScript
npm install @google/genai
Przeczytaj
go get google.golang.org/genai
Dostęp API
Stary pakiet SDK niejawnie obsługiwał klienta interfejsu API w tle, korzystając z różnych metod ad hoc. Utrudniało to zarządzanie klientem i danymi logowania.
Teraz interakcja odbywa się za pomocą centralnego obiektu Client
. Ten obiekt Client
pełni funkcję pojedynczego punktu wejścia dla różnych usług API (np. models
, chats
,
files
, tunings
), co zwiększa spójność i upraszcza zarządzanie danymi logowania i konfiguracją w przypadku różnych wywołań interfejsu API.
Przed (mniej scentralizowany dostęp do interfejsu API)
Python
Stary pakiet SDK nie używał jawnie obiektu klienta najwyższego poziomu w przypadku większości wywołań interfejsu API. Będziesz bezpośrednio tworzyć instancje obiektów GenerativeModel
i z nimi wchodzić w interakcję.
import google.generativeai as genai
# Directly create and use model objects
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(...)
chat = model.start_chat(...)
JavaScript
GoogleGenerativeAI
było centralnym punktem dla modeli i czatu, ale inne funkcje, takie jak zarządzanie plikami i pamięcią podręczną, często wymagały importowania i tworzenia instancji całkowicie oddzielnych klas klienta.
import { GoogleGenerativeAI } from "@google/generative-ai";
import { GoogleAIFileManager, GoogleAICacheManager } from "@google/generative-ai/server"; // For files/caching
const genAI = new GoogleGenerativeAI("YOUR_API_KEY");
const fileManager = new GoogleAIFileManager("YOUR_API_KEY");
const cacheManager = new GoogleAICacheManager("YOUR_API_KEY");
// Get a model instance, then call methods on it
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const result = await model.generateContent(...);
const chat = model.startChat(...);
// Call methods on separate client objects for other services
const uploadedFile = await fileManager.uploadFile(...);
const cache = await cacheManager.create(...);
Przeczytaj
Funkcja genai.NewClient
utworzyła klienta, ale operacje modelu generatywnego były zwykle wywoływane na oddzielnej instancji GenerativeModel
uzyskanej od tego klienta. Dostęp do innych usług mógł być uzyskiwany za pomocą innych pakietów lub wzorców.
import (
"github.com/google/generative-ai-go/genai"
"github.com/google/generative-ai-go/genai/fileman" // For files
"google.golang.org/api/option"
)
client, err := genai.NewClient(ctx, option.WithAPIKey("YOUR_API_KEY"))
fileClient, err := fileman.NewClient(ctx, option.WithAPIKey("YOUR_API_KEY"))
// Get a model instance, then call methods on it
model := client.GenerativeModel("gemini-1.5-flash")
resp, err := model.GenerateContent(...)
cs := model.StartChat()
// Call methods on separate client objects for other services
uploadedFile, err := fileClient.UploadFile(...)
Po (scentralizowany obiekt klienta)
Python
from google import genai
# Create a single client object
client = genai.Client()
# Access API methods through services on the client object
response = client.models.generate_content(...)
chat = client.chats.create(...)
my_file = client.files.upload(...)
tuning_job = client.tunings.tune(...)
JavaScript
import { GoogleGenAI } from "@google/genai";
// Create a single client object
const ai = new GoogleGenAI({apiKey: "YOUR_API_KEY"});
// Access API methods through services on the client object
const response = await ai.models.generateContent(...);
const chat = ai.chats.create(...);
const uploadedFile = await ai.files.upload(...);
const cache = await ai.caches.create(...);
Przeczytaj
import "google.golang.org/genai"
// Create a single client object
client, err := genai.NewClient(ctx, nil)
// Access API methods through services on the client object
result, err := client.Models.GenerateContent(...)
chat, err := client.Chats.Create(...)
uploadedFile, err := client.Files.Upload(...)
tuningJob, err := client.Tunings.Tune(...)
Uwierzytelnianie
Zarówno starsze, jak i nowe biblioteki uwierzytelniają się za pomocą kluczy API. Klucz interfejsu API możesz utworzyć w Google AI Studio.
Przed
Python
Stary pakiet SDK obsługiwał obiekt klienta interfejsu API w sposób niejawny.
import google.generativeai as genai
genai.configure(api_key=...)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
Przeczytaj
Zaimportuj biblioteki Google:
import (
"github.com/google/generative-ai-go/genai"
"google.golang.org/api/option"
)
Utwórz klienta:
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
Po
Python
Za pomocą pakietu Google GenAI SDK najpierw tworzysz klienta interfejsu API, który służy do wywoływania interfejsu API.
Jeśli nie przekażesz klucza do klienta, nowy pakiet SDK pobierze go z jednej ze zmiennych środowiskowych GEMINI_API_KEY
lub GOOGLE_API_KEY
.
export GEMINI_API_KEY="YOUR_API_KEY"
from google import genai
client = genai.Client() # Set the API key using the GEMINI_API_KEY env var.
# Alternatively, you could set the API key explicitly:
# client = genai.Client(api_key="your_api_key")
JavaScript
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({apiKey: "GEMINI_API_KEY"});
Przeczytaj
Zaimportuj bibliotekę GenAI:
import "google.golang.org/genai"
Utwórz klienta:
client, err := genai.NewClient(ctx, &genai.ClientConfig{
Backend: genai.BackendGeminiAPI,
})
Generowanie treści
Tekst
Przed
Python
Wcześniej nie było obiektów klienta. Dostęp do interfejsów API uzyskiwano bezpośrednio za pomocą obiektów GenerativeModel
.
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
'Tell me a story in 300 words'
)
print(response.text)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const prompt = "Tell me a story in 300 words";
const result = await model.generateContent(prompt);
console.log(result.response.text());
Przeczytaj
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-1.5-flash")
resp, err := model.GenerateContent(ctx, genai.Text("Tell me a story in 300 words."))
if err != nil {
log.Fatal(err)
}
printResponse(resp) // utility for printing response parts
Po
Python
Nowy pakiet Google GenAI SDK zapewnia dostęp do wszystkich metod interfejsu API za pomocą obiektu
Client
. Z wyjątkiem kilku specjalnych przypadków z zachowaniem stanu (chat
i live-api session
s) są to funkcje bezstanowe. Dla wygody i jednolitości zwracane obiekty są klasami pydantic
.
from google import genai
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='Tell me a story in 300 words.'
)
print(response.text)
print(response.model_dump_json(
exclude_none=True, indent=4))
JavaScript
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: "Tell me a story in 300 words.",
});
console.log(response.text);
Przeczytaj
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
result, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", genai.Text("Tell me a story in 300 words."), nil)
if err != nil {
log.Fatal(err)
}
debugPrint(result) // utility for printing result
Obraz
Przed
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content([
'Tell me a story based on this image',
Image.open(image_path)
])
print(response.text)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
function fileToGenerativePart(path, mimeType) {
return {
inlineData: {
data: Buffer.from(fs.readFileSync(path)).toString("base64"),
mimeType,
},
};
}
const prompt = "Tell me a story based on this image";
const imagePart = fileToGenerativePart(
`path/to/organ.jpg`,
"image/jpeg",
);
const result = await model.generateContent([prompt, imagePart]);
console.log(result.response.text());
Przeczytaj
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-1.5-flash")
imgData, err := os.ReadFile("path/to/organ.jpg")
if err != nil {
log.Fatal(err)
}
resp, err := model.GenerateContent(ctx,
genai.Text("Tell me about this instrument"),
genai.ImageData("jpeg", imgData))
if err != nil {
log.Fatal(err)
}
printResponse(resp) // utility for printing response
Po
Python
W nowym pakiecie SDK dostępnych jest wiele tych samych funkcji. Na przykład PIL.Image
obiektów jest automatycznie konwertowanych.
from google import genai
from PIL import Image
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents=[
'Tell me a story based on this image',
Image.open(image_path)
]
)
print(response.text)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const organ = await ai.files.upload({
file: "path/to/organ.jpg",
});
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: [
createUserContent([
"Tell me a story based on this image",
createPartFromUri(organ.uri, organ.mimeType)
]),
],
});
console.log(response.text);
Przeczytaj
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
imgData, err := os.ReadFile("path/to/organ.jpg")
if err != nil {
log.Fatal(err)
}
parts := []*genai.Part{
{Text: "Tell me a story based on this image"},
{InlineData: &genai.Blob{Data: imgData, MIMEType: "image/jpeg"}},
}
contents := []*genai.Content{
{Parts: parts},
}
result, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", contents, nil)
if err != nil {
log.Fatal(err)
}
debugPrint(result) // utility for printing result
Streaming
Przed
Python
import google.generativeai as genai
response = model.generate_content(
"Write a cute story about cats.",
stream=True)
for chunk in response:
print(chunk.text)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const prompt = "Write a story about a magic backpack.";
const result = await model.generateContentStream(prompt);
// Print text as it comes in.
for await (const chunk of result.stream) {
const chunkText = chunk.text();
process.stdout.write(chunkText);
}
Przeczytaj
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-1.5-flash")
iter := model.GenerateContentStream(ctx, genai.Text("Write a story about a magic backpack."))
for {
resp, err := iter.Next()
if err == iterator.Done {
break
}
if err != nil {
log.Fatal(err)
}
printResponse(resp) // utility for printing the response
}
Po
Python
from google import genai
client = genai.Client()
for chunk in client.models.generate_content_stream(
model='gemini-2.0-flash',
contents='Tell me a story in 300 words.'
):
print(chunk.text)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContentStream({
model: "gemini-2.0-flash",
contents: "Write a story about a magic backpack.",
});
let text = "";
for await (const chunk of response) {
console.log(chunk.text);
text += chunk.text;
}
Przeczytaj
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
for result, err := range client.Models.GenerateContentStream(
ctx,
"gemini-2.0-flash",
genai.Text("Write a story about a magic backpack."),
nil,
) {
if err != nil {
log.Fatal(err)
}
fmt.Print(result.Candidates[0].Content.Parts[0].Text)
}
Konfiguracja
Przed
Python
import google.generativeai as genai
model = genai.GenerativeModel(
'gemini-1.5-flash',
system_instruction='you are a story teller for kids under 5 years old',
generation_config=genai.GenerationConfig(
max_output_tokens=400,
top_k=2,
top_p=0.5,
temperature=0.5,
response_mime_type='application/json',
stop_sequences=['\n'],
)
)
response = model.generate_content('tell me a story in 100 words')
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
model: "gemini-1.5-flash",
generationConfig: {
candidateCount: 1,
stopSequences: ["x"],
maxOutputTokens: 20,
temperature: 1.0,
},
});
const result = await model.generateContent(
"Tell me a story about a magic backpack.",
);
console.log(result.response.text())
Przeczytaj
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-1.5-flash")
model.SetTemperature(0.5)
model.SetTopP(0.5)
model.SetTopK(2.0)
model.SetMaxOutputTokens(100)
model.ResponseMIMEType = "application/json"
resp, err := model.GenerateContent(ctx, genai.Text("Tell me about New York"))
if err != nil {
log.Fatal(err)
}
printResponse(resp) // utility for printing response
Po
Python
W przypadku wszystkich metod w nowym pakiecie SDK wymagane argumenty są podawane jako argumenty słownikowe. Wszystkie opcjonalne dane wejściowe są podawane w config
argumencie. Argumenty konfiguracji można określać jako słowniki Pythona lub klasy w przestrzeni nazw google.genai.types
.Config
Dla wygody i jednolitości wszystkie definicje w module types
są pydantic
klasami.
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='Tell me a story in 100 words.',
config=types.GenerateContentConfig(
system_instruction='you are a story teller for kids under 5 years old',
max_output_tokens= 400,
top_k= 2,
top_p= 0.5,
temperature= 0.5,
response_mime_type= 'application/json',
stop_sequences= ['\n'],
seed=42,
),
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: "Tell me a story about a magic backpack.",
config: {
candidateCount: 1,
stopSequences: ["x"],
maxOutputTokens: 20,
temperature: 1.0,
},
});
console.log(response.text);
Przeczytaj
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
result, err := client.Models.GenerateContent(ctx,
"gemini-2.0-flash",
genai.Text("Tell me about New York"),
&genai.GenerateContentConfig{
Temperature: genai.Ptr[float32](0.5),
TopP: genai.Ptr[float32](0.5),
TopK: genai.Ptr[float32](2.0),
ResponseMIMEType: "application/json",
StopSequences: []string{"Yankees"},
CandidateCount: 2,
Seed: genai.Ptr[int32](42),
MaxOutputTokens: 128,
PresencePenalty: genai.Ptr[float32](0.5),
FrequencyPenalty: genai.Ptr[float32](0.5),
},
)
if err != nil {
log.Fatal(err)
}
debugPrint(result) // utility for printing response
Ustawienia bezpieczeństwa
Generowanie odpowiedzi z ustawieniami bezpieczeństwa:
Przed
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
'say something bad',
safety_settings={
'HATE': 'BLOCK_ONLY_HIGH',
'HARASSMENT': 'BLOCK_ONLY_HIGH',
}
)
JavaScript
import { GoogleGenerativeAI, HarmCategory, HarmBlockThreshold } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
model: "gemini-1.5-flash",
safetySettings: [
{
category: HarmCategory.HARM_CATEGORY_HARASSMENT,
threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
},
],
});
const unsafePrompt =
"I support Martians Soccer Club and I think " +
"Jupiterians Football Club sucks! Write an ironic phrase telling " +
"them how I feel about them.";
const result = await model.generateContent(unsafePrompt);
try {
result.response.text();
} catch (e) {
console.error(e);
console.log(result.response.candidates[0].safetyRatings);
}
Po
Python
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='say something bad',
config=types.GenerateContentConfig(
safety_settings= [
types.SafetySetting(
category='HARM_CATEGORY_HATE_SPEECH',
threshold='BLOCK_ONLY_HIGH'
),
]
),
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const unsafePrompt =
"I support Martians Soccer Club and I think " +
"Jupiterians Football Club sucks! Write an ironic phrase telling " +
"them how I feel about them.";
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: unsafePrompt,
config: {
safetySettings: [
{
category: "HARM_CATEGORY_HARASSMENT",
threshold: "BLOCK_ONLY_HIGH",
},
],
},
});
console.log("Finish reason:", response.candidates[0].finishReason);
console.log("Safety ratings:", response.candidates[0].safetyRatings);
Dane asynchroniczne
Przed
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content_async(
'tell me a story in 100 words'
)
Po
Python
Aby używać nowego pakietu SDK z asyncio
, musisz zaimplementować każdą metodę w client.aio
w osobny sposób.async
from google import genai
client = genai.Client()
response = await client.aio.models.generate_content(
model='gemini-2.0-flash',
contents='Tell me a story in 300 words.'
)
Czat
Rozpocznij czat i wyślij wiadomość do modelu:
Przed
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
chat = model.start_chat()
response = chat.send_message(
"Tell me a story in 100 words")
response = chat.send_message(
"What happened after that?")
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const chat = model.startChat({
history: [
{
role: "user",
parts: [{ text: "Hello" }],
},
{
role: "model",
parts: [{ text: "Great to meet you. What would you like to know?" }],
},
],
});
let result = await chat.sendMessage("I have 2 dogs in my house.");
console.log(result.response.text());
result = await chat.sendMessage("How many paws are in my house?");
console.log(result.response.text());
Przeczytaj
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()
cs.History = []*genai.Content{
{
Parts: []genai.Part{
genai.Text("Hello, I have 2 dogs in my house."),
},
Role: "user",
},
{
Parts: []genai.Part{
genai.Text("Great to meet you. What would you like to know?"),
},
Role: "model",
},
}
res, err := cs.SendMessage(ctx, genai.Text("How many paws are in my house?"))
if err != nil {
log.Fatal(err)
}
printResponse(res) // utility for printing the response
Po
Python
from google import genai
client = genai.Client()
chat = client.chats.create(model='gemini-2.0-flash')
response = chat.send_message(
message='Tell me a story in 100 words')
response = chat.send_message(
message='What happened after that?')
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const chat = ai.chats.create({
model: "gemini-2.0-flash",
history: [
{
role: "user",
parts: [{ text: "Hello" }],
},
{
role: "model",
parts: [{ text: "Great to meet you. What would you like to know?" }],
},
],
});
const response1 = await chat.sendMessage({
message: "I have 2 dogs in my house.",
});
console.log("Chat response 1:", response1.text);
const response2 = await chat.sendMessage({
message: "How many paws are in my house?",
});
console.log("Chat response 2:", response2.text);
Przeczytaj
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
chat, err := client.Chats.Create(ctx, "gemini-2.0-flash", nil, nil)
if err != nil {
log.Fatal(err)
}
result, err := chat.SendMessage(ctx, genai.Part{Text: "Hello, I have 2 dogs in my house."})
if err != nil {
log.Fatal(err)
}
debugPrint(result) // utility for printing result
result, err = chat.SendMessage(ctx, genai.Part{Text: "How many paws are in my house?"})
if err != nil {
log.Fatal(err)
}
debugPrint(result) // utility for printing result
Wywoływanie funkcji
Przed
Python
import google.generativeai as genai
from enum import Enum
def get_current_weather(location: str) -> str:
"""Get the current whether in a given location.
Args:
location: required, The city and state, e.g. San Franciso, CA
unit: celsius or fahrenheit
"""
print(f'Called with: {location=}')
return "23C"
model = genai.GenerativeModel(
model_name="gemini-1.5-flash",
tools=[get_current_weather]
)
response = model.generate_content("What is the weather in San Francisco?")
function_call = response.candidates[0].parts[0].function_call
Po
Python
W nowym pakiecie SDK domyślnie włączone jest automatyczne wywoływanie funkcji. Tutaj możesz ją wyłączyć.
from google import genai
from google.genai import types
client = genai.Client()
def get_current_weather(location: str) -> str:
"""Get the current whether in a given location.
Args:
location: required, The city and state, e.g. San Franciso, CA
unit: celsius or fahrenheit
"""
print(f'Called with: {location=}')
return "23C"
response = client.models.generate_content(
model='gemini-2.0-flash',
contents="What is the weather like in Boston?",
config=types.GenerateContentConfig(
tools=[get_current_weather],
automatic_function_calling={'disable': True},
),
)
function_call = response.candidates[0].content.parts[0].function_call
Automatyczne wywoływanie funkcji
Przed
Python
Stary pakiet SDK obsługuje tylko automatyczne wywoływanie funkcji na czacie. W nowym pakiecie SDK jest to domyślne działanie w przypadku generate_content
.
import google.generativeai as genai
def get_current_weather(city: str) -> str:
return "23C"
model = genai.GenerativeModel(
model_name="gemini-1.5-flash",
tools=[get_current_weather]
)
chat = model.start_chat(
enable_automatic_function_calling=True)
result = chat.send_message("What is the weather in San Francisco?")
Po
Python
from google import genai
from google.genai import types
client = genai.Client()
def get_current_weather(city: str) -> str:
return "23C"
response = client.models.generate_content(
model='gemini-2.0-flash',
contents="What is the weather like in Boston?",
config=types.GenerateContentConfig(
tools=[get_current_weather]
),
)
Wykonanie kodu
Wykonywanie kodu to narzędzie, które umożliwia modelowi generowanie kodu Pythona, uruchamianie go i zwracanie wyniku.
Przed
Python
import google.generativeai as genai
model = genai.GenerativeModel(
model_name="gemini-1.5-flash",
tools="code_execution"
)
result = model.generate_content(
"What is the sum of the first 50 prime numbers? Generate and run code for "
"the calculation, and make sure you get all 50.")
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
model: "gemini-1.5-flash",
tools: [{ codeExecution: {} }],
});
const result = await model.generateContent(
"What is the sum of the first 50 prime numbers? " +
"Generate and run code for the calculation, and make sure you get " +
"all 50.",
);
console.log(result.response.text());
Po
Python
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='What is the sum of the first 50 prime numbers? Generate and run '
'code for the calculation, and make sure you get all 50.',
config=types.GenerateContentConfig(
tools=[types.Tool(code_execution=types.ToolCodeExecution)],
),
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContent({
model: "gemini-2.0-pro-exp-02-05",
contents: `Write and execute code that calculates the sum of the first 50 prime numbers.
Ensure that only the executable code and its resulting output are generated.`,
});
// Each part may contain text, executable code, or an execution result.
for (const part of response.candidates[0].content.parts) {
console.log(part);
console.log("\n");
}
console.log("-".repeat(80));
// The `.text` accessor concatenates the parts into a markdown-formatted text.
console.log("\n", response.text);
Szukaj groundingu
GoogleSearch
(Gemini ≥ 2.0) i GoogleSearchRetrieval
(Gemini < 2.0) to narzędzia, które umożliwiają modelowi pobieranie publicznych danych z internetu na potrzeby ugruntowania, dostarczane przez Google.
Przed
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
contents="what is the Google stock price?",
tools='google_search_retrieval'
)
Po
Python
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='What is the Google stock price?',
config=types.GenerateContentConfig(
tools=[
types.Tool(
google_search=types.GoogleSearch()
)
]
)
)
Odpowiedź JSON
Generuj odpowiedzi w formacie JSON.
Przed
Python
Określając response_schema
i ustawiającresponse_mime_type="application/json"
, użytkownicy mogą ograniczyć model do generowania JSON
odpowiedzi o określonej strukturze.
import google.generativeai as genai
import typing_extensions as typing
class CountryInfo(typing.TypedDict):
name: str
population: int
capital: str
continent: str
major_cities: list[str]
gdp: int
official_language: str
total_area_sq_mi: int
model = genai.GenerativeModel(model_name="gemini-1.5-flash")
result = model.generate_content(
"Give me information of the United States",
generation_config=genai.GenerationConfig(
response_mime_type="application/json",
response_schema = CountryInfo
),
)
JavaScript
import { GoogleGenerativeAI, SchemaType } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const schema = {
description: "List of recipes",
type: SchemaType.ARRAY,
items: {
type: SchemaType.OBJECT,
properties: {
recipeName: {
type: SchemaType.STRING,
description: "Name of the recipe",
nullable: false,
},
},
required: ["recipeName"],
},
};
const model = genAI.getGenerativeModel({
model: "gemini-1.5-pro",
generationConfig: {
responseMimeType: "application/json",
responseSchema: schema,
},
});
const result = await model.generateContent(
"List a few popular cookie recipes.",
);
console.log(result.response.text());
Po
Python
Nowy pakiet SDK używa klas pydantic
do udostępniania schematu (możesz jednak przekazać genai.types.Schema
lub równoważny dict
). W miarę możliwości pakiet SDK będzie analizować zwrócony kod JSON i zwracać wynik w formacie response.parsed
. Jeśli jako schemat podasz pydantic
klasę, pakiet SDK przekształci ją w instancję tej klasy.JSON
from google import genai
from pydantic import BaseModel
client = genai.Client()
class CountryInfo(BaseModel):
name: str
population: int
capital: str
continent: str
major_cities: list[str]
gdp: int
official_language: str
total_area_sq_mi: int
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='Give me information of the United States.',
config={
'response_mime_type': 'application/json',
'response_schema': CountryInfo,
},
)
response.parsed
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: "List a few popular cookie recipes.",
config: {
responseMimeType: "application/json",
responseSchema: {
type: "array",
items: {
type: "object",
properties: {
recipeName: { type: "string" },
ingredients: { type: "array", items: { type: "string" } },
},
required: ["recipeName", "ingredients"],
},
},
},
});
console.log(response.text);
Pliki
Prześlij
Przesyłanie pliku:
Przed
Python
import requests
import pathlib
import google.generativeai as genai
# Download file
response = requests.get(
'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)
file = genai.upload_file(path='a11.txt')
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content([
'Can you summarize this file:',
my_file
])
print(response.text)
Po
Python
import requests
import pathlib
from google import genai
client = genai.Client()
# Download file
response = requests.get(
'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)
my_file = client.files.upload(file='a11.txt')
response = client.models.generate_content(
model='gemini-2.0-flash',
contents=[
'Can you summarize this file:',
my_file
]
)
print(response.text)
Wystawianie i otrzymywanie
Wyświetlanie listy przesłanych plików i pobieranie przesłanego pliku z nazwą pliku:
Przed
Python
import google.generativeai as genai
for file in genai.list_files():
print(file.name)
file = genai.get_file(name=file.name)
Po
Python
from google import genai
client = genai.Client()
for file in client.files.list():
print(file.name)
file = client.files.get(name=file.name)
Usuń
Usuwanie pliku:
Przed
Python
import pathlib
import google.generativeai as genai
pathlib.Path('dummy.txt').write_text(dummy)
dummy_file = genai.upload_file(path='dummy.txt')
file = genai.delete_file(name=dummy_file.name)
Po
Python
import pathlib
from google import genai
client = genai.Client()
pathlib.Path('dummy.txt').write_text(dummy)
dummy_file = client.files.upload(file='dummy.txt')
response = client.files.delete(name=dummy_file.name)
Przechowywanie kontekstu w pamięci podręcznej
Pamięć podręczna kontekstu umożliwia użytkownikowi jednokrotne przekazanie treści do modelu, zapisanie tokenów wejściowych w pamięci podręcznej, a następnie odwoływanie się do nich w kolejnych wywołaniach, aby obniżyć koszty.
Przed
Python
import requests
import pathlib
import google.generativeai as genai
from google.generativeai import caching
# Download file
response = requests.get(
'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)
# Upload file
document = genai.upload_file(path="a11.txt")
# Create cache
apollo_cache = caching.CachedContent.create(
model="gemini-1.5-flash-001",
system_instruction="You are an expert at analyzing transcripts.",
contents=[document],
)
# Generate response
apollo_model = genai.GenerativeModel.from_cached_content(
cached_content=apollo_cache
)
response = apollo_model.generate_content("Find a lighthearted moment from this transcript")
JavaScript
import { GoogleAICacheManager, GoogleAIFileManager } from "@google/generative-ai/server";
import { GoogleGenerativeAI } from "@google/generative-ai";
const cacheManager = new GoogleAICacheManager("GOOGLE_API_KEY");
const fileManager = new GoogleAIFileManager("GOOGLE_API_KEY");
const uploadResult = await fileManager.uploadFile("path/to/a11.txt", {
mimeType: "text/plain",
});
const cacheResult = await cacheManager.create({
model: "models/gemini-1.5-flash",
contents: [
{
role: "user",
parts: [
{
fileData: {
fileUri: uploadResult.file.uri,
mimeType: uploadResult.file.mimeType,
},
},
],
},
],
});
console.log(cacheResult);
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModelFromCachedContent(cacheResult);
const result = await model.generateContent(
"Please summarize this transcript.",
);
console.log(result.response.text());
Po
Python
import requests
import pathlib
from google import genai
from google.genai import types
client = genai.Client()
# Check which models support caching.
for m in client.models.list():
for action in m.supported_actions:
if action == "createCachedContent":
print(m.name)
break
# Download file
response = requests.get(
'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)
# Upload file
document = client.files.upload(file='a11.txt')
# Create cache
model='gemini-1.5-flash-001'
apollo_cache = client.caches.create(
model=model,
config={
'contents': [document],
'system_instruction': 'You are an expert at analyzing transcripts.',
},
)
# Generate response
response = client.models.generate_content(
model=model,
contents='Find a lighthearted moment from this transcript',
config=types.GenerateContentConfig(
cached_content=apollo_cache.name,
)
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const filePath = path.join(media, "a11.txt");
const document = await ai.files.upload({
file: filePath,
config: { mimeType: "text/plain" },
});
console.log("Uploaded file name:", document.name);
const modelName = "gemini-1.5-flash";
const contents = [
createUserContent(createPartFromUri(document.uri, document.mimeType)),
];
const cache = await ai.caches.create({
model: modelName,
config: {
contents: contents,
systemInstruction: "You are an expert analyzing transcripts.",
},
});
console.log("Cache created:", cache);
const response = await ai.models.generateContent({
model: modelName,
contents: "Please summarize this transcript",
config: { cachedContent: cache.name },
});
console.log("Response text:", response.text);
Liczba tokenów
Oblicz liczbę tokenów w żądaniu.
Przed
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.count_tokens(
'The quick brown fox jumps over the lazy dog.')
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY+);
const model = genAI.getGenerativeModel({
model: "gemini-1.5-flash",
});
// Count tokens in a prompt without calling text generation.
const countResult = await model.countTokens(
"The quick brown fox jumps over the lazy dog.",
);
console.log(countResult.totalTokens); // 11
const generateResult = await model.generateContent(
"The quick brown fox jumps over the lazy dog.",
);
// On the response for `generateContent`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the combined token count (`totalTokenCount`).
console.log(generateResult.response.usageMetadata);
// candidatesTokenCount and totalTokenCount depend on response, may vary
// { promptTokenCount: 11, candidatesTokenCount: 124, totalTokenCount: 135 }
Po
Python
from google import genai
client = genai.Client()
response = client.models.count_tokens(
model='gemini-2.0-flash',
contents='The quick brown fox jumps over the lazy dog.',
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const prompt = "The quick brown fox jumps over the lazy dog.";
const countTokensResponse = await ai.models.countTokens({
model: "gemini-2.0-flash",
contents: prompt,
});
console.log(countTokensResponse.totalTokens);
const generateResponse = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: prompt,
});
console.log(generateResponse.usageMetadata);
Generuj obrazy
Generowanie obrazów:
Przed
Python
#pip install https://github.com/google-gemini/generative-ai-python@imagen
import google.generativeai as genai
imagen = genai.ImageGenerationModel(
"imagen-3.0-generate-001")
gen_images = imagen.generate_images(
prompt="Robot holding a red skateboard",
number_of_images=1,
safety_filter_level="block_low_and_above",
person_generation="allow_adult",
aspect_ratio="3:4",
)
Po
Python
from google import genai
client = genai.Client()
gen_images = client.models.generate_images(
model='imagen-3.0-generate-001',
prompt='Robot holding a red skateboard',
config=types.GenerateImagesConfig(
number_of_images= 1,
safety_filter_level= "BLOCK_LOW_AND_ABOVE",
person_generation= "ALLOW_ADULT",
aspect_ratio= "3:4",
)
)
for n, image in enumerate(gen_images.generated_images):
pathlib.Path(f'{n}.png').write_bytes(
image.image.image_bytes)
Umieszczanie treści
generować osadzenia treści;
Przed
Python
import google.generativeai as genai
response = genai.embed_content(
model='models/gemini-embedding-001',
content='Hello world'
)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
model: "gemini-embedding-001",
});
const result = await model.embedContent("Hello world!");
console.log(result.embedding);
Po
Python
from google import genai
client = genai.Client()
response = client.models.embed_content(
model='gemini-embedding-001',
contents='Hello world',
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const text = "Hello World!";
const result = await ai.models.embedContent({
model: "gemini-embedding-001",
contents: text,
config: { outputDimensionality: 10 },
});
console.log(result.embeddings);
Dostrajanie modelu
Tworzenie i używanie modelu dostrojonego.
Nowy pakiet SDK upraszcza dostrajanie dzięki funkcji client.tunings.tune
, która uruchamia zadanie dostrajania i sprawdza jego stan do momentu zakończenia.
Przed
Python
import google.generativeai as genai
import random
# create tuning model
train_data = {}
for i in range(1, 6):
key = f'input {i}'
value = f'output {i}'
train_data[key] = value
name = f'generate-num-{random.randint(0,10000)}'
operation = genai.create_tuned_model(
source_model='models/gemini-1.5-flash-001-tuning',
training_data=train_data,
id = name,
epoch_count = 5,
batch_size=4,
learning_rate=0.001,
)
# wait for tuning complete
tuningProgress = operation.result()
# generate content with the tuned model
model = genai.GenerativeModel(model_name=f'tunedModels/{name}')
response = model.generate_content('55')
Po
Python
from google import genai
from google.genai import types
client = genai.Client()
# Check which models are available for tuning.
for m in client.models.list():
for action in m.supported_actions:
if action == "createTunedModel":
print(m.name)
break
# create tuning model
training_dataset=types.TuningDataset(
examples=[
types.TuningExample(
text_input=f'input {i}',
output=f'output {i}',
)
for i in range(5)
],
)
tuning_job = client.tunings.tune(
base_model='models/gemini-1.5-flash-001-tuning',
training_dataset=training_dataset,
config=types.CreateTuningJobConfig(
epoch_count= 5,
batch_size=4,
learning_rate=0.001,
tuned_model_display_name="test tuned model"
)
)
# generate content with the tuned model
response = client.models.generate_content(
model=tuning_job.tuned_model.model,
contents='55',
)