שדרוג ל-Google Gen AI SDKs

כשהשקנו את משפחת המודלים של Gemini 2.0, השקנו גם קבוצה חדשה של ערכות SDK של Google Gen AI לעבודה עם Gemini API:

ערכות ה-SDK המעודכנות האלה יהיו תואמות באופן מלא לכל התכונות והמודלים של Gemini API, כולל התוספות האחרונות כמו Live API ו-Veo.

מומלץ להתחיל להעביר את הפרויקטים שלכם מ-SDKs הישנים של Gemini ל-SDKs החדשים של Gen AI. כדי לעזור לכם להתחיל, במדריך הזה מפורטות דוגמאות לקוד לפני ואחרי ההעברה. נמשיך להוסיף כאן דוגמאות שיעזרו לכם להתחיל להשתמש ב-SDK החדש.

התקנת ה-SDK

לפני

Python

pip install -U -q "google-generativeai"

JavaScript

npm install @google/generative-ai

אחרי

Python

pip install -U -q "google-genai"

JavaScript

npm install @google/genai

אמת

אימות באמצעות מפתח API. אפשר ליצור את מפתח ה-API ב-Google AI Studio.

לפני

Python

ה-SDK הישן טיפל באובייקט הלקוח של ה-API באופן משתמע. ב-SDK החדש יוצרים את לקוח ה-API ומשתמשים בו כדי לבצע קריאה ל-API. חשוב לזכור שבכל מקרה, ה-SDK יאסוף את מפתח ה-API משתנה הסביבה GOOGLE_API_KEY אם לא מעבירים מפתח ללקוח.

import google.generativeai as genai

genai.configure(api_key=...)

JavaScript

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");

אחרי

Python

export GOOGLE_API_KEY="YOUR_API_KEY"
from google import genai

client = genai.Client() # Set the API key using the GOOGLE_API_KEY env var.
                        # Alternatively, you could set the API key explicitly:
                        # client = genai.Client(api_key="your_api_key")

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({apiKey: "GEMINI_API_KEY"});

יצירת תוכן

לפני

Python

ערכת ה-SDK החדשה מספקת גישה לכל שיטות ה-API דרך האובייקט Client. מלבד כמה מקרים מיוחדים עם מצב (chat ו-session של API פעיל), כל הפונקציות האלה הן ללא מצב. כדי לשמור על יעילות ועל אחידות, האובייקטים שמוחזרים הם מחלקות pydantic.

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
    'Tell me a story in 300 words'
)
print(response.text)

JavaScript

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const prompt = "Tell me a story in 300 words";

const result = await model.generateContent(prompt);
console.log(result.response.text());

אחרי

Python

from google import genai
client = genai.Client()

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents='Tell me a story in 300 words.'
)
print(response.text)

print(response.model_dump_json(
    exclude_none=True, indent=4))

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "Tell me a story in 300 words.",
});
console.log(response.text);

לפני

Python

רבות מהתכונות הנוחות הקיימות ב-SDK הקודם קיימות גם ב-SDK החדש. לדוגמה, אובייקטים מסוג PIL.Image מומרים באופן אוטומטי.

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content([
    'Tell me a story based on this image',
    Image.open(image_path)
])
print(response.text)

JavaScript

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

function fileToGenerativePart(path, mimeType) {
  return {
    inlineData: {
      data: Buffer.from(fs.readFileSync(path)).toString("base64"),
      mimeType,
    },
  };
}

const prompt = "Tell me a story based on this image";

const imagePart = fileToGenerativePart(
  `path/to/organ.jpg`,
  "image/jpeg",
);

const result = await model.generateContent([prompt, imagePart]);
console.log(result.response.text());

אחרי

Python

from google import genai
from PIL import Image

client = genai.Client()

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents=[
        'Tell me a story based on this image',
        Image.open(image_path)
    ]
)
print(response.text)

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const organ = await ai.files.upload({
  file: "path/to/organ.jpg",
});

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: [
    createUserContent([
      "Tell me a story based on this image",
      createPartFromUri(organ.uri, organ.mimeType)
    ]),
  ],
});
console.log(response.text);

סטרימינג

לפני

Python

import google.generativeai as genai

response = model.generate_content(
    "Write a cute story about cats.",
    stream=True)
for chunk in response:
    print(chunk.text)

JavaScript

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const prompt = "Write a story about a magic backpack.";

const result = await model.generateContentStream(prompt);

// Print text as it comes in.
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}

אחרי

Python

from google import genai

client = genai.Client()

for chunk in client.models.generate_content_stream(
  model='gemini-2.0-flash',
  contents='Tell me a story in 300 words.'
):
    print(chunk.text)

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const response = await ai.models.generateContentStream({
  model: "gemini-2.0-flash",
  contents: "Write a story about a magic backpack.",
});
let text = "";
for await (const chunk of response) {
  console.log(chunk.text);
  text += chunk.text;
}

ארגומנטים אופציונליים

לפני

Python

בכל השיטות ב-SDK החדש, הארגומנטים הנדרשים מוצגים כארגומנטים של מילות מפתח. כל הקלט האופציונלי מסופק בארגומנט config. אפשר לציין את ארגומנטים התצורה כמילונים של Python או ככיתות Config במרחב השמות google.genai.types. כדי לשמור על נוחות ועל אחידות, כל ההגדרות במודול types הן כיתות pydantic.

import google.generativeai as genai

model = genai.GenerativeModel(
  'gemini-1.5-flash',
    system_instruction='you are a story teller for kids under 5 years old',
    generation_config=genai.GenerationConfig(
      max_output_tokens=400,
      top_k=2,
      top_p=0.5,
      temperature=0.5,
      response_mime_type='application/json',
      stop_sequences=['\n'],
    )
)
response = model.generate_content('tell me a story in 100 words')

JavaScript

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  generationConfig: {
    candidateCount: 1,
    stopSequences: ["x"],
    maxOutputTokens: 20,
    temperature: 1.0,
  },
});

const result = await model.generateContent(
  "Tell me a story about a magic backpack.",
);
console.log(result.response.text())

אחרי

Python

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
  model='gemini-2.0-flash',
  contents='Tell me a story in 100 words.',
  config=types.GenerateContentConfig(
      system_instruction='you are a story teller for kids under 5 years old',
      max_output_tokens= 400,
      top_k= 2,
      top_p= 0.5,
      temperature= 0.5,
      response_mime_type= 'application/json',
      stop_sequences= ['\n'],
      seed=42,
  ),
)

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "Tell me a story about a magic backpack.",
  config: {
    candidateCount: 1,
    stopSequences: ["x"],
    maxOutputTokens: 20,
    temperature: 1.0,
  },
});

console.log(response.text);

הגדרות בטיחות

יצירת תשובה עם הגדרות בטיחות:

לפני

Python

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
    'say something bad',
    safety_settings={
        'HATE': 'BLOCK_ONLY_HIGH',
        'HARASSMENT': 'BLOCK_ONLY_HIGH',
  }
)

JavaScript

import { GoogleGenerativeAI, HarmCategory, HarmBlockThreshold } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  safetySettings: [
    {
      category: HarmCategory.HARM_CATEGORY_HARASSMENT,
      threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    },
  ],
});

const unsafePrompt =
  "I support Martians Soccer Club and I think " +
  "Jupiterians Football Club sucks! Write an ironic phrase telling " +
  "them how I feel about them.";

const result = await model.generateContent(unsafePrompt);

try {
  result.response.text();
} catch (e) {
  console.error(e);
  console.log(result.response.candidates[0].safetyRatings);
}

אחרי

Python

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
  model='gemini-2.0-flash',
  contents='say something bad',
  config=types.GenerateContentConfig(
      safety_settings= [
          types.SafetySetting(
              category='HARM_CATEGORY_HATE_SPEECH',
              threshold='BLOCK_ONLY_HIGH'
          ),
      ]
  ),
)

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const unsafePrompt =
  "I support Martians Soccer Club and I think " +
  "Jupiterians Football Club sucks! Write an ironic phrase telling " +
  "them how I feel about them.";

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: unsafePrompt,
  config: {
    safetySettings: [
      {
        category: "HARM_CATEGORY_HARASSMENT",
        threshold: "BLOCK_ONLY_HIGH",
      },
    ],
  },
});

console.log("Finish reason:", response.candidates[0].finishReason);
console.log("Safety ratings:", response.candidates[0].safetyRatings);

אסינכרוני

לפני

Python

כדי להשתמש ב-SDK החדש עם asyncio, יש הטמעה נפרדת של async לכל שיטה ב-client.aio.

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content_async(
    'tell me a story in 100 words'
)

אחרי

Python

from google import genai

client = genai.Client()

response = await client.aio.models.generate_content(
    model='gemini-2.0-flash', 
    contents='Tell me a story in 300 words.'
)

צ'אט

מתחילים צ'אט ושולחים הודעה לדוגמן או לדוגמנית:

לפני

Python

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
chat = model.start_chat()

response = chat.send_message(
    "Tell me a story in 100 words")
response = chat.send_message(
    "What happened after that?")

JavaScript

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const chat = model.startChat({
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});
let result = await chat.sendMessage("I have 2 dogs in my house.");
console.log(result.response.text());
result = await chat.sendMessage("How many paws are in my house?");
console.log(result.response.text());

אחרי

Python

from google import genai

client = genai.Client()

chat = client.chats.create(model='gemini-2.0-flash')

response = chat.send_message(
    message='Tell me a story in 100 words')
response = chat.send_message(
    message='What happened after that?')

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const chat = ai.chats.create({
  model: "gemini-2.0-flash",
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});

const response1 = await chat.sendMessage({
  message: "I have 2 dogs in my house.",
});
console.log("Chat response 1:", response1.text);

const response2 = await chat.sendMessage({
  message: "How many paws are in my house?",
});
console.log("Chat response 2:", response2.text);

קריאה לפונקציה

לפני

Python

ב-SDK החדש, ברירת המחדל היא קריאה אוטומטית לפונקציות. כאן משביתים אותו.

import google.generativeai as genai
from enum import Enum 

def get_current_weather(location: str) -> str:
    """Get the current whether in a given location.

    Args:
        location: required, The city and state, e.g. San Franciso, CA
        unit: celsius or fahrenheit
    """
    print(f'Called with: {location=}')
    return "23C"

model = genai.GenerativeModel(
    model_name="gemini-1.5-flash",
    tools=[get_current_weather]
)

response = model.generate_content("What is the weather in San Francisco?")
function_call = response.candidates[0].parts[0].function_call

אחרי

Python

from google import genai
from google.genai import types

client = genai.Client()

def get_current_weather(location: str) -> str:
    """Get the current whether in a given location.

    Args:
        location: required, The city and state, e.g. San Franciso, CA
        unit: celsius or fahrenheit
    """
    print(f'Called with: {location=}')
    return "23C"

response = client.models.generate_content(
  model='gemini-2.0-flash',
  contents="What is the weather like in Boston?",
  config=types.GenerateContentConfig(
      tools=[get_current_weather],
      automatic_function_calling={'disable': True},
  ),
)

function_call = response.candidates[0].content.parts[0].function_call

קריאה אוטומטית לפונקציות

לפני

Python

ה-SDK הישן תומך רק בקריאה אוטומטית של פונקציות בצ'אט. ב-SDK החדש, זוהי התנהגות ברירת המחדל ב-generate_content.

import google.generativeai as genai

def get_current_weather(city: str) -> str:
    return "23C"

model = genai.GenerativeModel(
    model_name="gemini-1.5-flash",
    tools=[get_current_weather]
)

chat = model.start_chat(
    enable_automatic_function_calling=True)
result = chat.send_message("What is the weather in San Francisco?")

אחרי

Python

from google import genai
from google.genai import types
client = genai.Client()

def get_current_weather(city: str) -> str:
    return "23C"

response = client.models.generate_content(
  model='gemini-2.0-flash',
  contents="What is the weather like in Boston?",
  config=types.GenerateContentConfig(
      tools=[get_current_weather] 
  ),
)

ביצוע קוד

הכלי 'הרצת קוד' מאפשר למודל ליצור קוד Python, להריץ אותו ולהחזיר את התוצאה.

לפני

Python

import google.generativeai as genai

model = genai.GenerativeModel(
    model_name="gemini-1.5-flash",
    tools="code_execution"
)

result = model.generate_content(
  "What is the sum of the first 50 prime numbers? Generate and run code for "
  "the calculation, and make sure you get all 50.")

JavaScript

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  tools: [{ codeExecution: {} }],
});

const result = await model.generateContent(
  "What is the sum of the first 50 prime numbers? " +
    "Generate and run code for the calculation, and make sure you get " +
    "all 50.",
);

console.log(result.response.text());

אחרי

Python

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents='What is the sum of the first 50 prime numbers? Generate and run '
            'code for the calculation, and make sure you get all 50.',
    config=types.GenerateContentConfig(
        tools=[types.Tool(code_execution=types.ToolCodeExecution)],
    ),
)

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const response = await ai.models.generateContent({
  model: "gemini-2.0-pro-exp-02-05",
  contents: `Write and execute code that calculates the sum of the first 50 prime numbers.
            Ensure that only the executable code and its resulting output are generated.`,
});

// Each part may contain text, executable code, or an execution result.
for (const part of response.candidates[0].content.parts) {
  console.log(part);
  console.log("\n");
}

console.log("-".repeat(80));
// The `.text` accessor concatenates the parts into a markdown-formatted text.
console.log("\n", response.text);

חיפוש יסודות

GoogleSearch (Gemini>=2.0) ו-GoogleSearchRetrieval (Gemini < 2.0) הם כלים שמאפשרים למודל לאחזר נתוני אינטרנט גלויים לכולם לצורך יצירת בסיס, שמופעל על ידי Google.

לפני

Python

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
    contents="what is the Google stock price?",
    tools='google_search_retrieval'
)

אחרי

Python

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents='What is the Google stock price?',
    config=types.GenerateContentConfig(
        tools=[
            types.Tool(
                google_search=types.GoogleSearch()
            )
        ]
    )
)

תגובת JSON

יצירת תשובות בפורמט JSON.

לפני

Python

על ידי ציון response_schema והגדרה של response_mime_type="application/json", המשתמשים יכולים להגביל את המודל כך שיפיק תגובה JSON לפי מבנה נתון. ה-SDK החדש משתמש ב-pydantic classes כדי לספק את הסכימה (אבל אפשר להעביר genai.types.Schema או dict מקביל). כשהדבר אפשרי, ה-SDK ינתח את ה-JSON המוחזר ויחזיר את התוצאה ב-response.parsed. אם סיפקתם את המחלקה pydantic כהסכימה, ה-SDK יהפוך את JSON למכונה של המחלקה.

import google.generativeai as genai
import typing_extensions as typing

class CountryInfo(typing.TypedDict):
    name: str
    population: int
    capital: str
    continent: str
    major_cities: list[str]
    gdp: int
    official_language: str
    total_area_sq_mi: int

model = genai.GenerativeModel(model_name="gemini-1.5-flash")
result = model.generate_content(
    "Give me information of the United States",
    generation_config=genai.GenerationConfig(
        response_mime_type="application/json",
        response_schema = CountryInfo
    ),
)

JavaScript

import { GoogleGenerativeAI, SchemaType } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");

const schema = {
  description: "List of recipes",
  type: SchemaType.ARRAY,
  items: {
    type: SchemaType.OBJECT,
    properties: {
      recipeName: {
        type: SchemaType.STRING,
        description: "Name of the recipe",
        nullable: false,
      },
    },
    required: ["recipeName"],
  },
};

const model = genAI.getGenerativeModel({
  model: "gemini-1.5-pro",
  generationConfig: {
    responseMimeType: "application/json",
    responseSchema: schema,
  },
});

const result = await model.generateContent(
  "List a few popular cookie recipes.",
);
console.log(result.response.text());

אחרי

Python

from google import genai
from pydantic import BaseModel

client = genai.Client()

class CountryInfo(BaseModel):
    name: str
    population: int
    capital: str
    continent: str
    major_cities: list[str]
    gdp: int
    official_language: str
    total_area_sq_mi: int

response = client.models.generate_content( 
    model='gemini-2.0-flash', 
    contents='Give me information of the United States.', 
    config={ 
        'response_mime_type': 'application/json',
        'response_schema': CountryInfo, 
    }, 
)

response.parsed

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "List a few popular cookie recipes.",
  config: {
    responseMimeType: "application/json",
    responseSchema: {
      type: "array",
      items: {
        type: "object",
        properties: {
          recipeName: { type: "string" },
          ingredients: { type: "array", items: { type: "string" } },
        },
        required: ["recipeName", "ingredients"],
      },
    },
  },
});
console.log(response.text);

קבצים

העלאה

העלאת קובץ:

לפני

Python

import requests
import pathlib
import google.generativeai as genai

# Download file
response = requests.get(
    'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)

file = genai.upload_file(path='a11.txt')

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content([
    'Can you summarize this file:', 
    my_file
])
print(response.text)

אחרי

Python

import requests
import pathlib
from google import genai

client = genai.Client()

# Download file
response = requests.get(
    'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)

my_file = client.files.upload(file='a11.txt')

response = client.models.generate_content(
    model='gemini-2.0-flash', 
    contents=[
        'Can you summarize this file:', 
        my_file
    ]
)
print(response.text)

הצגה ברשימה ואחזור

הצגת רשימה של קבצים שהועלו וקבלת קובץ שהועלה לפי שם הקובץ:

לפני

Python

import google.generativeai as genai

for file in genai.list_files():
  print(file.name)

file = genai.get_file(name=file.name)

אחרי

Python

from google import genai
client = genai.Client()

for file in client.files.list():
    print(file.name)

file = client.files.get(name=file.name)

מחיקה

כדי למחוק קובץ:

לפני

Python

import pathlib
import google.generativeai as genai

pathlib.Path('dummy.txt').write_text(dummy)
dummy_file = genai.upload_file(path='dummy.txt')

file = genai.delete_file(name=dummy_file.name)

אחרי

Python

import pathlib
from google import genai

client = genai.Client()

pathlib.Path('dummy.txt').write_text(dummy)
dummy_file = client.files.upload(file='dummy.txt')

response = client.files.delete(name=dummy_file.name)

שמירת הקשר במטמון

שמירת הקשר במטמון מאפשרת למשתמש להעביר את התוכן למודל פעם אחת, לשמור במטמון את אסימוני הקלט ואז להפנות לאסימונים ששמורים במטמון בקריאות הבאות כדי להוזיל את העלות.

לפני

Python

import requests
import pathlib
import google.generativeai as genai
from google.generativeai import caching

# Download file
response = requests.get(
    'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)

# Upload file
document = genai.upload_file(path="a11.txt")

# Create cache
apollo_cache = caching.CachedContent.create(
    model="gemini-1.5-flash-001",
    system_instruction="You are an expert at analyzing transcripts.",
    contents=[document],
)

# Generate response
apollo_model = genai.GenerativeModel.from_cached_content(
    cached_content=apollo_cache
)
response = apollo_model.generate_content("Find a lighthearted moment from this transcript")

JavaScript

import { GoogleAICacheManager, GoogleAIFileManager } from "@google/generative-ai/server";
import { GoogleGenerativeAI } from "@google/generative-ai";

const cacheManager = new GoogleAICacheManager("GOOGLE_API_KEY");
const fileManager = new GoogleAIFileManager("GOOGLE_API_KEY");

const uploadResult = await fileManager.uploadFile("path/to/a11.txt", {
  mimeType: "text/plain",
});

const cacheResult = await cacheManager.create({
  model: "models/gemini-1.5-flash",
  contents: [
    {
      role: "user",
      parts: [
        {
          fileData: {
            fileUri: uploadResult.file.uri,
            mimeType: uploadResult.file.mimeType,
          },
        },
      ],
    },
  ],
});

console.log(cacheResult);

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModelFromCachedContent(cacheResult);
const result = await model.generateContent(
  "Please summarize this transcript.",
);
console.log(result.response.text());

אחרי

Python

import requests
import pathlib
from google import genai
from google.genai import types

client = genai.Client()

# Check which models support caching.
for m in client.models.list():
  for action in m.supported_actions:
    if action == "createCachedContent":
      print(m.name) 
      break

# Download file
response = requests.get(
    'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)

# Upload file
document = client.files.upload(file='a11.txt')

# Create cache
model='gemini-1.5-flash-001'
apollo_cache = client.caches.create(
      model=model,
      config={
          'contents': [document],
          'system_instruction': 'You are an expert at analyzing transcripts.',
      },
  )

# Generate response
response = client.models.generate_content(
    model=model,
    contents='Find a lighthearted moment from this transcript',
    config=types.GenerateContentConfig(
        cached_content=apollo_cache.name,
    )
)

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const filePath = path.join(media, "a11.txt");
const document = await ai.files.upload({
  file: filePath,
  config: { mimeType: "text/plain" },
});
console.log("Uploaded file name:", document.name);
const modelName = "gemini-1.5-flash";

const contents = [
  createUserContent(createPartFromUri(document.uri, document.mimeType)),
];

const cache = await ai.caches.create({
  model: modelName,
  config: {
    contents: contents,
    systemInstruction: "You are an expert analyzing transcripts.",
  },
});
console.log("Cache created:", cache);

const response = await ai.models.generateContent({
  model: modelName,
  contents: "Please summarize this transcript",
  config: { cachedContent: cache.name },
});
console.log("Response text:", response.text);

ספירת אסימונים

ספירת מספר האסימונים בבקשה.

לפני

Python

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.count_tokens(
    'The quick brown fox jumps over the lazy dog.')

JavaScript

 import { GoogleGenerativeAI } from "@google/generative-ai";

 const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY+);
 const model = genAI.getGenerativeModel({
   model: "gemini-1.5-flash",
 });

 // Count tokens in a prompt without calling text generation.
 const countResult = await model.countTokens(
   "The quick brown fox jumps over the lazy dog.",
 );

 console.log(countResult.totalTokens); // 11

 const generateResult = await model.generateContent(
   "The quick brown fox jumps over the lazy dog.",
 );

 // On the response for `generateContent`, use `usageMetadata`
 // to get separate input and output token counts
 // (`promptTokenCount` and `candidatesTokenCount`, respectively),
 // as well as the combined token count (`totalTokenCount`).
 console.log(generateResult.response.usageMetadata);
 // candidatesTokenCount and totalTokenCount depend on response, may vary
 // { promptTokenCount: 11, candidatesTokenCount: 124, totalTokenCount: 135 }

אחרי

Python

from google import genai

client = genai.Client()

response = client.models.count_tokens(
    model='gemini-2.0-flash',
    contents='The quick brown fox jumps over the lazy dog.',
)

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const prompt = "The quick brown fox jumps over the lazy dog.";
const countTokensResponse = await ai.models.countTokens({
  model: "gemini-2.0-flash",
  contents: prompt,
});
console.log(countTokensResponse.totalTokens);

const generateResponse = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: prompt,
});
console.log(generateResponse.usageMetadata);

יצירת תמונות

יצירת תמונות:

לפני

Python

#pip install https://github.com/google-gemini/generative-ai-python@imagen
import google.generativeai as genai

imagen = genai.ImageGenerationModel(
    "imagen-3.0-generate-001")
gen_images = imagen.generate_images(
    prompt="Robot holding a red skateboard",
    number_of_images=1,
    safety_filter_level="block_low_and_above",
    person_generation="allow_adult",
    aspect_ratio="3:4",
)

אחרי

Python

from google import genai

client = genai.Client()

gen_images = client.models.generate_images(
    model='imagen-3.0-generate-001',
    prompt='Robot holding a red skateboard',
    config=types.GenerateImagesConfig(
        number_of_images= 1,
        safety_filter_level= "BLOCK_LOW_AND_ABOVE",
        person_generation= "ALLOW_ADULT",
        aspect_ratio= "3:4",
    )
)

for n, image in enumerate(gen_images.generated_images):
    pathlib.Path(f'{n}.png').write_bytes(
        image.image.image_bytes)

הטמעת תוכן

יצירת הטמעות של תוכן.

לפני

Python

import google.generativeai as genai

response = genai.embed_content(
  model='models/text-embedding-004',
  content='Hello world'
)

JavaScript

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
  model: "text-embedding-004",
});

const result = await model.embedContent("Hello world!");

console.log(result.embedding);

אחרי

Python

from google import genai

client = genai.Client()

response = client.models.embed_content(
  model='text-embedding-004',
  contents='Hello world',
)

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const text = "Hello World!";
const result = await ai.models.embedContent({
  model: "text-embedding-004",
  contents: text,
  config: { outputDimensionality: 10 },
});
console.log(result.embeddings);

כוונון מודל

יצירת מודל שעבר כוונון ושימוש בו.

ה-SDK החדש מפשט את התאמת ההגדרות באמצעות client.tunings.tune, שמפעיל את המשימה של התאמת ההגדרות ומבצע סקרים עד שהמשימה תושלם.

לפני

Python

import google.generativeai as genai
import random

# create tuning model
train_data = {} 
for i in range(1, 6): 
  key = f'input {i}' 
  value = f'output {i}' 
  train_data[key] = value

name = f'generate-num-{random.randint(0,10000)}'
operation = genai.create_tuned_model(
    source_model='models/gemini-1.5-flash-001-tuning',
    training_data=train_data,
    id = name,
    epoch_count = 5,
    batch_size=4,
    learning_rate=0.001,
)
# wait for tuning complete
tuningProgress = operation.result()

# generate content with the tuned model
model = genai.GenerativeModel(model_name=f'tunedModels/{name}')
response = model.generate_content('55')

אחרי

Python

from google import genai
from google.genai import types

client = genai.Client()

# Check which models are available for tuning.
for m in client.models.list():
  for action in m.supported_actions:
    if action == "createTunedModel":
      print(m.name) 
      break

# create tuning model
training_dataset=types.TuningDataset(
        examples=[
            types.TuningExample(
                text_input=f'input {i}',
                output=f'output {i}',
            )
            for i in range(5)
        ],
    )
tuning_job = client.tunings.tune(
    base_model='models/gemini-1.5-flash-001-tuning',
    training_dataset=training_dataset,
    config=types.CreateTuningJobConfig(
        epoch_count= 5,
        batch_size=4,
        learning_rate=0.001,
        tuned_model_display_name="test tuned model"
    )
)

# generate content with the tuned model
response = client.models.generate_content(
    model=tuning_job.tuned_model.model,
    contents='55', 
)

JavaScript בדפדפן

כדי להתחיל להשתמש ב-Gemini API בדפדפן, אפשר לייבא את ה-SDK של בינה מלאכותית גנרטיבית ל-JavaScript מ-CDN, כפי שמתואר בדוגמה הבאה:

<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="UTF-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>Using My Package</title>
  </head>
  <body>
    <script type="module">
      import {GoogleGenAI} from 'https://cdn.jsdelivr.net/npm/@google/genai@latest/+esm'

          const ai = new GoogleGenAI({apiKey: "GOOGLE_API_KEY"});

          async function main() {
            const response = await ai.models.generateContent({
              model: 'gemini-2.0-flash-001',
              contents: 'Why is the sky blue?',
            });
            console.log(response.text);
          }

          main();
    </script>
  </body>
</html>

כדי להריץ את הקוד הזה באופן מקומי, צריך להשתמש בשרת כמו http-server. אם תנסו להריץ את הקוד ממערכת קבצים מקומית, יכול להיות שתקבלו שגיאת CORS.