מעבר אל Google GenAI SDK

החל מגרסה Gemini 2.0 שהושקה בסוף 2024, אנחנו מציגים קבוצה חדשה של ספריות שנקראת Google GenAI SDK. הוא מציע חוויית פיתוח משופרת באמצעות ארכיטקטורת לקוח מעודכנת, ומפשט את המעבר בין תהליכי עבודה של מפתחים לבין תהליכי עבודה של ארגונים.

‫Google GenAI SDK נמצא עכשיו בזמינות כללית (GA) בכל הפלטפורמות הנתמכות. אם אתם משתמשים באחת מספריות מדור קודם, מומלץ מאוד לבצע מיגרציה.

במדריך הזה יש דוגמאות של קוד לפני ואחרי ההעברה, כדי לעזור לכם להתחיל.

התקנה

לפני

Python

pip install -U -q "google-generativeai"

JavaScript

npm install @google/generative-ai

Go

go get github.com/google/generative-ai-go

אחרי

Python

pip install -U -q "google-genai"

JavaScript

npm install @google/genai

Go

go get google.golang.org/genai

גישה באמצעות ממשק API

ב-SDK הישן, הטיפול בלקוח ה-API נעשה באופן מרומז מאחורי הקלעים באמצעות מגוון שיטות אד-הוק. במצב כזה קשה לנהל את הלקוח ואת פרטי הכניסה. עכשיו, אתם יכולים לבצע פעולות באמצעות אובייקט מרכזי של Client. אובייקט Client הזה משמש כנקודת כניסה יחידה לשירותי API שונים (למשל, ‫models, chats, files, tunings), מה שמקדם עקביות ומפשט את ניהול האישורים וההגדרות בקריאות שונות ל-API.

לפני (גישת API פחות מרכזית)

Python

ב-SDK הישן לא נעשה שימוש מפורש באובייקט לקוח ברמה העליונה ברוב הקריאות ל-API. אתם יוצרים מופעים של אובייקטים של GenerativeModel ומבצעים איתם אינטראקציה ישירה.

import google.generativeai as genai

# Directly create and use model objects
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(...)
chat = model.start_chat(...)

JavaScript

GoogleGenerativeAI היה נקודה מרכזית למודלים ולצ'אט, אבל כדי להשתמש בפונקציות אחרות כמו ניהול קבצים ומטמון, היה צריך לייבא ולהפעיל מחלקות לקוח נפרדות לגמרי.

import { GoogleGenerativeAI } from "@google/generative-ai";
import { GoogleAIFileManager, GoogleAICacheManager } from "@google/generative-ai/server"; // For files/caching

const genAI = new GoogleGenerativeAI("YOUR_API_KEY");
const fileManager = new GoogleAIFileManager("YOUR_API_KEY");
const cacheManager = new GoogleAICacheManager("YOUR_API_KEY");

// Get a model instance, then call methods on it
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const result = await model.generateContent(...);
const chat = model.startChat(...);

// Call methods on separate client objects for other services
const uploadedFile = await fileManager.uploadFile(...);
const cache = await cacheManager.create(...);

Go

הפונקציה genai.NewClient יצרה לקוח, אבל בדרך כלל הפעולות של המודל הגנרטיבי הופעלו במופע GenerativeModel נפרד שהתקבל מהלקוח הזה. יכול להיות שהייתה גישה לשירותים אחרים דרך חבילות או דפוסים שונים.

import (
      "github.com/google/generative-ai-go/genai"
      "github.com/google/generative-ai-go/genai/fileman" // For files
      "google.golang.org/api/option"
)

client, err := genai.NewClient(ctx, option.WithAPIKey("YOUR_API_KEY"))
fileClient, err := fileman.NewClient(ctx, option.WithAPIKey("YOUR_API_KEY"))

// Get a model instance, then call methods on it
model := client.GenerativeModel("gemini-1.5-flash")
resp, err := model.GenerateContent(...)
cs := model.StartChat()

// Call methods on separate client objects for other services
uploadedFile, err := fileClient.UploadFile(...)

אחרי (אובייקט לקוח מרכזי)

Python

from google import genai

# Create a single client object
client = genai.Client()

# Access API methods through services on the client object
response = client.models.generate_content(...)
chat = client.chats.create(...)
my_file = client.files.upload(...)
tuning_job = client.tunings.tune(...)

JavaScript

import { GoogleGenAI } from "@google/genai";

// Create a single client object
const ai = new GoogleGenAI({apiKey: "YOUR_API_KEY"});

// Access API methods through services on the client object
const response = await ai.models.generateContent(...);
const chat = ai.chats.create(...);
const uploadedFile = await ai.files.upload(...);
const cache = await ai.caches.create(...);

Go

import "google.golang.org/genai"

// Create a single client object
client, err := genai.NewClient(ctx, nil)

// Access API methods through services on the client object
result, err := client.Models.GenerateContent(...)
chat, err := client.Chats.Create(...)
uploadedFile, err := client.Files.Upload(...)
tuningJob, err := client.Tunings.Tune(...)

אימות

גם בספריות מדור קודם וגם בספריות חדשות, האימות מתבצע באמצעות מפתחות API. אפשר ליצור מפתח API ב-Google AI Studio.

לפני

Python

ב-SDK הישן, אובייקט לקוח ה-API טופל באופן מרומז.

import google.generativeai as genai

genai.configure(api_key=...)

JavaScript

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");

Go

מייבאים את הספריות של Google:

import (
      "github.com/google/generative-ai-go/genai"
      "google.golang.org/api/option"
)

יוצרים את הלקוח:

client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))

אחרי

Python

בעזרת Google GenAI SDK, קודם יוצרים לקוח API, שמשמש לקריאה ל-API. אם לא מעבירים מפתח ללקוח, ערכת ה-SDK החדשה תאסוף את מפתח ה-API מאחד ממשתני הסביבה GEMINI_API_KEY או GOOGLE_API_KEY.

export GEMINI_API_KEY="YOUR_API_KEY"
from google import genai

client = genai.Client() # Set the API key using the GEMINI_API_KEY env var.
                        # Alternatively, you could set the API key explicitly:
                        # client = genai.Client(api_key="your_api_key")

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({apiKey: "GEMINI_API_KEY"});

Go

מייבאים את ספריית ה-GenAI:

import "google.golang.org/genai"

יוצרים את הלקוח:

client, err := genai.NewClient(ctx, &genai.ClientConfig{
        Backend:  genai.BackendGeminiAPI,
})

יצירת תוכן

טקסט

לפני

Python

בעבר לא היו אובייקטים של לקוחות, והגישה לממשקי ה-API הייתה ישירות דרך אובייקטים של GenerativeModel.

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
    'Tell me a story in 300 words'
)
print(response.text)

JavaScript

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const prompt = "Tell me a story in 300 words";

const result = await model.generateContent(prompt);
console.log(result.response.text());

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
    log.Fatal(err)
}
defer client.Close()

model := client.GenerativeModel("gemini-1.5-flash")
resp, err := model.GenerateContent(ctx, genai.Text("Tell me a story in 300 words."))
if err != nil {
    log.Fatal(err)
}

printResponse(resp) // utility for printing response parts

אחרי

Python

ה-SDK החדש של Google GenAI מספק גישה לכל שיטות ה-API דרך האובייקט Client. למעט כמה מקרים מיוחדים עם שמירת מצב (chat ו-live-api sessions), אלה פונקציות ללא שמירת מצב. לנוחות ולעקביות, האובייקטים שמוחזרים הם מחלקות pydantic.

from google import genai
client = genai.Client()

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents='Tell me a story in 300 words.'
)
print(response.text)

print(response.model_dump_json(
    exclude_none=True, indent=4))

JavaScript

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "Tell me a story in 300 words.",
});
console.log(response.text);

Go

ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
if err != nil {
    log.Fatal(err)
}

result, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", genai.Text("Tell me a story in 300 words."), nil)
if err != nil {
    log.Fatal(err)
}
debugPrint(result) // utility for printing result

תמונה

לפני

Python

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content([
    'Tell me a story based on this image',
    Image.open(image_path)
])
print(response.text)

JavaScript

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

function fileToGenerativePart(path, mimeType) {
  return {
    inlineData: {
      data: Buffer.from(fs.readFileSync(path)).toString("base64"),
      mimeType,
    },
  };
}

const prompt = "Tell me a story based on this image";

const imagePart = fileToGenerativePart(
  `path/to/organ.jpg`,
  "image/jpeg",
);

const result = await model.generateContent([prompt, imagePart]);
console.log(result.response.text());

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
    log.Fatal(err)
}
defer client.Close()

model := client.GenerativeModel("gemini-1.5-flash")

imgData, err := os.ReadFile("path/to/organ.jpg")
if err != nil {
    log.Fatal(err)
}

resp, err := model.GenerateContent(ctx,
    genai.Text("Tell me about this instrument"),
    genai.ImageData("jpeg", imgData))
if err != nil {
    log.Fatal(err)
}

printResponse(resp) // utility for printing response

אחרי

Python

הרבה מהתכונות הנוחות האלה קיימות גם ב-SDK החדש. לדוגמה, PIL.Image אובייקטים מומרים באופן אוטומטי.

from google import genai
from PIL import Image

client = genai.Client()

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents=[
        'Tell me a story based on this image',
        Image.open(image_path)
    ]
)
print(response.text)

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const organ = await ai.files.upload({
  file: "path/to/organ.jpg",
});

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: [
    createUserContent([
      "Tell me a story based on this image",
      createPartFromUri(organ.uri, organ.mimeType)
    ]),
  ],
});
console.log(response.text);

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
    log.Fatal(err)
}

imgData, err := os.ReadFile("path/to/organ.jpg")
if err != nil {
    log.Fatal(err)
}

parts := []*genai.Part{
    {Text: "Tell me a story based on this image"},
    {InlineData: &genai.Blob{Data: imgData, MIMEType: "image/jpeg"}},
}
contents := []*genai.Content{
    {Parts: parts},
}

result, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", contents, nil)
if err != nil {
    log.Fatal(err)
}
debugPrint(result) // utility for printing result

סטרימינג

לפני

Python

import google.generativeai as genai

response = model.generate_content(
    "Write a cute story about cats.",
    stream=True)
for chunk in response:
    print(chunk.text)

JavaScript

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const prompt = "Write a story about a magic backpack.";

const result = await model.generateContentStream(prompt);

// Print text as it comes in.
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
    log.Fatal(err)
}
defer client.Close()

model := client.GenerativeModel("gemini-1.5-flash")
iter := model.GenerateContentStream(ctx, genai.Text("Write a story about a magic backpack."))
for {
    resp, err := iter.Next()
    if err == iterator.Done {
        break
    }
    if err != nil {
        log.Fatal(err)
    }
    printResponse(resp) // utility for printing the response
}

אחרי

Python

from google import genai

client = genai.Client()

for chunk in client.models.generate_content_stream(
  model='gemini-2.0-flash',
  contents='Tell me a story in 300 words.'
):
    print(chunk.text)

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const response = await ai.models.generateContentStream({
  model: "gemini-2.0-flash",
  contents: "Write a story about a magic backpack.",
});
let text = "";
for await (const chunk of response) {
  console.log(chunk.text);
  text += chunk.text;
}

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
    log.Fatal(err)
}

for result, err := range client.Models.GenerateContentStream(
    ctx,
    "gemini-2.0-flash",
    genai.Text("Write a story about a magic backpack."),
    nil,
) {
    if err != nil {
        log.Fatal(err)
    }
    fmt.Print(result.Candidates[0].Content.Parts[0].Text)
}

תצורה

לפני

Python

import google.generativeai as genai

model = genai.GenerativeModel(
  'gemini-1.5-flash',
    system_instruction='you are a story teller for kids under 5 years old',
    generation_config=genai.GenerationConfig(
      max_output_tokens=400,
      top_k=2,
      top_p=0.5,
      temperature=0.5,
      response_mime_type='application/json',
      stop_sequences=['\n'],
    )
)
response = model.generate_content('tell me a story in 100 words')

JavaScript

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  generationConfig: {
    candidateCount: 1,
    stopSequences: ["x"],
    maxOutputTokens: 20,
    temperature: 1.0,
  },
});

const result = await model.generateContent(
  "Tell me a story about a magic backpack.",
);
console.log(result.response.text())

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
    log.Fatal(err)
}
defer client.Close()

model := client.GenerativeModel("gemini-1.5-flash")
model.SetTemperature(0.5)
model.SetTopP(0.5)
model.SetTopK(2.0)
model.SetMaxOutputTokens(100)
model.ResponseMIMEType = "application/json"
resp, err := model.GenerateContent(ctx, genai.Text("Tell me about New York"))
if err != nil {
    log.Fatal(err)
}
printResponse(resp) // utility for printing response

אחרי

Python

בכל השיטות ב-SDK החדש, הארגומנטים הנדרשים מסופקים כארגומנטים של מילות מפתח. כל הקלטים האופציונליים מופיעים בארגומנט config. אפשר לציין את ארגומנטים ההגדרה כמילונים של Python או כסוגי מחלקות Config במרחב השמות google.genai.types. כדי לשמור על שימושיות ואחידות, כל ההגדרות במודול types הן מחלקות pydantic.

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
  model='gemini-2.0-flash',
  contents='Tell me a story in 100 words.',
  config=types.GenerateContentConfig(
      system_instruction='you are a story teller for kids under 5 years old',
      max_output_tokens= 400,
      top_k= 2,
      top_p= 0.5,
      temperature= 0.5,
      response_mime_type= 'application/json',
      stop_sequences= ['\n'],
      seed=42,
  ),
)

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "Tell me a story about a magic backpack.",
  config: {
    candidateCount: 1,
    stopSequences: ["x"],
    maxOutputTokens: 20,
    temperature: 1.0,
  },
});

console.log(response.text);

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
    log.Fatal(err)
}

result, err := client.Models.GenerateContent(ctx,
    "gemini-2.0-flash",
    genai.Text("Tell me about New York"),
    &genai.GenerateContentConfig{
        Temperature:      genai.Ptr[float32](0.5),
        TopP:             genai.Ptr[float32](0.5),
        TopK:             genai.Ptr[float32](2.0),
        ResponseMIMEType: "application/json",
        StopSequences:    []string{"Yankees"},
        CandidateCount:   2,
        Seed:             genai.Ptr[int32](42),
        MaxOutputTokens:  128,
        PresencePenalty:  genai.Ptr[float32](0.5),
        FrequencyPenalty: genai.Ptr[float32](0.5),
    },
)
if err != nil {
    log.Fatal(err)
}
debugPrint(result) // utility for printing response

הגדרות בטיחות

יצירת תשובה עם הגדרות בטיחות:

לפני

Python

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
    'say something bad',
    safety_settings={
        'HATE': 'BLOCK_ONLY_HIGH',
        'HARASSMENT': 'BLOCK_ONLY_HIGH',
  }
)

JavaScript

import { GoogleGenerativeAI, HarmCategory, HarmBlockThreshold } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  safetySettings: [
    {
      category: HarmCategory.HARM_CATEGORY_HARASSMENT,
      threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    },
  ],
});

const unsafePrompt =
  "I support Martians Soccer Club and I think " +
  "Jupiterians Football Club sucks! Write an ironic phrase telling " +
  "them how I feel about them.";

const result = await model.generateContent(unsafePrompt);

try {
  result.response.text();
} catch (e) {
  console.error(e);
  console.log(result.response.candidates[0].safetyRatings);
}

אחרי

Python

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
  model='gemini-2.0-flash',
  contents='say something bad',
  config=types.GenerateContentConfig(
      safety_settings= [
          types.SafetySetting(
              category='HARM_CATEGORY_HATE_SPEECH',
              threshold='BLOCK_ONLY_HIGH'
          ),
      ]
  ),
)

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const unsafePrompt =
  "I support Martians Soccer Club and I think " +
  "Jupiterians Football Club sucks! Write an ironic phrase telling " +
  "them how I feel about them.";

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: unsafePrompt,
  config: {
    safetySettings: [
      {
        category: "HARM_CATEGORY_HARASSMENT",
        threshold: "BLOCK_ONLY_HIGH",
      },
    ],
  },
});

console.log("Finish reason:", response.candidates[0].finishReason);
console.log("Safety ratings:", response.candidates[0].safetyRatings);

אסינכרוני

לפני

Python

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content_async(
    'tell me a story in 100 words'
)

אחרי

Python

כדי להשתמש ב-SDK החדש עם asyncio, צריך להטמיע בנפרד כל שיטה ב-client.aio.async

from google import genai

client = genai.Client()

response = await client.aio.models.generate_content(
    model='gemini-2.0-flash',
    contents='Tell me a story in 300 words.'
)

צ'אט

מתחילים צ'אט ושולחים הודעה למודל:

לפני

Python

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
chat = model.start_chat()

response = chat.send_message(
    "Tell me a story in 100 words")
response = chat.send_message(
    "What happened after that?")

JavaScript

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const chat = model.startChat({
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});
let result = await chat.sendMessage("I have 2 dogs in my house.");
console.log(result.response.text());
result = await chat.sendMessage("How many paws are in my house?");
console.log(result.response.text());

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
    log.Fatal(err)
}
defer client.Close()

model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()

cs.History = []*genai.Content{
    {
        Parts: []genai.Part{
            genai.Text("Hello, I have 2 dogs in my house."),
        },
        Role: "user",
    },
    {
        Parts: []genai.Part{
            genai.Text("Great to meet you. What would you like to know?"),
        },
        Role: "model",
    },
}

res, err := cs.SendMessage(ctx, genai.Text("How many paws are in my house?"))
if err != nil {
    log.Fatal(err)
}
printResponse(res) // utility for printing the response

אחרי

Python

from google import genai

client = genai.Client()

chat = client.chats.create(model='gemini-2.0-flash')

response = chat.send_message(
    message='Tell me a story in 100 words')
response = chat.send_message(
    message='What happened after that?')

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const chat = ai.chats.create({
  model: "gemini-2.0-flash",
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});

const response1 = await chat.sendMessage({
  message: "I have 2 dogs in my house.",
});
console.log("Chat response 1:", response1.text);

const response2 = await chat.sendMessage({
  message: "How many paws are in my house?",
});
console.log("Chat response 2:", response2.text);

Go

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
    log.Fatal(err)
}

chat, err := client.Chats.Create(ctx, "gemini-2.0-flash", nil, nil)
if err != nil {
    log.Fatal(err)
}

result, err := chat.SendMessage(ctx, genai.Part{Text: "Hello, I have 2 dogs in my house."})
if err != nil {
    log.Fatal(err)
}
debugPrint(result) // utility for printing result

result, err = chat.SendMessage(ctx, genai.Part{Text: "How many paws are in my house?"})
if err != nil {
    log.Fatal(err)
}
debugPrint(result) // utility for printing result

בקשה להפעלת פונקציה

לפני

Python

import google.generativeai as genai
from enum import Enum

def get_current_weather(location: str) -> str:
    """Get the current whether in a given location.

    Args:
        location: required, The city and state, e.g. San Franciso, CA
        unit: celsius or fahrenheit
    """
    print(f'Called with: {location=}')
    return "23C"

model = genai.GenerativeModel(
    model_name="gemini-1.5-flash",
    tools=[get_current_weather]
)

response = model.generate_content("What is the weather in San Francisco?")
function_call = response.candidates[0].parts[0].function_call

אחרי

Python

ב-SDK החדש, הפעלת פונקציות אוטומטית היא ברירת המחדל. כאן משביתים את האפשרות.

from google import genai
from google.genai import types

client = genai.Client()

def get_current_weather(location: str) -> str:
    """Get the current whether in a given location.

    Args:
        location: required, The city and state, e.g. San Franciso, CA
        unit: celsius or fahrenheit
    """
    print(f'Called with: {location=}')
    return "23C"

response = client.models.generate_content(
  model='gemini-2.0-flash',
  contents="What is the weather like in Boston?",
  config=types.GenerateContentConfig(
      tools=[get_current_weather],
      automatic_function_calling={'disable': True},
  ),
)

function_call = response.candidates[0].content.parts[0].function_call

הפעלה אוטומטית של פונקציות

לפני

Python

ה-SDK הישן תומך רק בהפעלת פונקציות אוטומטית בצ'אט. ב-SDK החדש, זוהי התנהגות ברירת המחדל ב-generate_content.

import google.generativeai as genai

def get_current_weather(city: str) -> str:
    return "23C"

model = genai.GenerativeModel(
    model_name="gemini-1.5-flash",
    tools=[get_current_weather]
)

chat = model.start_chat(
    enable_automatic_function_calling=True)
result = chat.send_message("What is the weather in San Francisco?")

אחרי

Python

from google import genai
from google.genai import types
client = genai.Client()

def get_current_weather(city: str) -> str:
    return "23C"

response = client.models.generate_content(
  model='gemini-2.0-flash',
  contents="What is the weather like in Boston?",
  config=types.GenerateContentConfig(
      tools=[get_current_weather]
  ),
)

ביצוע קוד

הכלי 'הרצת קוד' מאפשר למודל ליצור קוד Python, להריץ אותו ולהחזיר את התוצאה.

לפני

Python

import google.generativeai as genai

model = genai.GenerativeModel(
    model_name="gemini-1.5-flash",
    tools="code_execution"
)

result = model.generate_content(
  "What is the sum of the first 50 prime numbers? Generate and run code for "
  "the calculation, and make sure you get all 50.")

JavaScript

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  tools: [{ codeExecution: {} }],
});

const result = await model.generateContent(
  "What is the sum of the first 50 prime numbers? " +
    "Generate and run code for the calculation, and make sure you get " +
    "all 50.",
);

console.log(result.response.text());

אחרי

Python

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents='What is the sum of the first 50 prime numbers? Generate and run '
            'code for the calculation, and make sure you get all 50.',
    config=types.GenerateContentConfig(
        tools=[types.Tool(code_execution=types.ToolCodeExecution)],
    ),
)

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const response = await ai.models.generateContent({
  model: "gemini-2.0-pro-exp-02-05",
  contents: `Write and execute code that calculates the sum of the first 50 prime numbers.
            Ensure that only the executable code and its resulting output are generated.`,
});

// Each part may contain text, executable code, or an execution result.
for (const part of response.candidates[0].content.parts) {
  console.log(part);
  console.log("\n");
}

console.log("-".repeat(80));
// The `.text` accessor concatenates the parts into a markdown-formatted text.
console.log("\n", response.text);

חיפוש עם עיגון בנתונים

GoogleSearch (Gemini>=2.0) ו-GoogleSearchRetrieval (Gemini < 2.0) הם כלים שמאפשרים למודל לאחזר נתונים ציבוריים מהאינטרנט לצורך ביסוס, והם מופעלים על ידי Google.

לפני

Python

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
    contents="what is the Google stock price?",
    tools='google_search_retrieval'
)

אחרי

Python

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents='What is the Google stock price?',
    config=types.GenerateContentConfig(
        tools=[
            types.Tool(
                google_search=types.GoogleSearch()
            )
        ]
    )
)

תגובת JSON

יצירת תשובות בפורמט JSON.

לפני

Python

אם מציינים response_schema ומגדירים response_mime_type="application/json", המשתמשים יכולים להגביל את המודל כך שיפיק תגובה JSON לפי מבנה נתון.

import google.generativeai as genai
import typing_extensions as typing

class CountryInfo(typing.TypedDict):
    name: str
    population: int
    capital: str
    continent: str
    major_cities: list[str]
    gdp: int
    official_language: str
    total_area_sq_mi: int

model = genai.GenerativeModel(model_name="gemini-1.5-flash")
result = model.generate_content(
    "Give me information of the United States",
    generation_config=genai.GenerationConfig(
        response_mime_type="application/json",
        response_schema = CountryInfo
    ),
)

JavaScript

import { GoogleGenerativeAI, SchemaType } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");

const schema = {
  description: "List of recipes",
  type: SchemaType.ARRAY,
  items: {
    type: SchemaType.OBJECT,
    properties: {
      recipeName: {
        type: SchemaType.STRING,
        description: "Name of the recipe",
        nullable: false,
      },
    },
    required: ["recipeName"],
  },
};

const model = genAI.getGenerativeModel({
  model: "gemini-1.5-pro",
  generationConfig: {
    responseMimeType: "application/json",
    responseSchema: schema,
  },
});

const result = await model.generateContent(
  "List a few popular cookie recipes.",
);
console.log(result.response.text());

אחרי

Python

ערכת ה-SDK החדשה משתמשת במחלקות pydantic כדי לספק את הסכימה (אבל אפשר להעביר genai.types.Schema או מקבילה dict). כשהדבר אפשרי, ערכת ה-SDK תנתח את ה-JSON שמוחזר ותחזיר את התוצאה ב-response.parsed. אם סיפקתם מחלקה pydantic כסכימה, ה-SDK ימיר את JSON למופע של המחלקה.

from google import genai
from pydantic import BaseModel

client = genai.Client()

class CountryInfo(BaseModel):
    name: str
    population: int
    capital: str
    continent: str
    major_cities: list[str]
    gdp: int
    official_language: str
    total_area_sq_mi: int

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents='Give me information of the United States.',
    config={
        'response_mime_type': 'application/json',
        'response_schema': CountryInfo,
    },
)

response.parsed

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "List a few popular cookie recipes.",
  config: {
    responseMimeType: "application/json",
    responseSchema: {
      type: "array",
      items: {
        type: "object",
        properties: {
          recipeName: { type: "string" },
          ingredients: { type: "array", items: { type: "string" } },
        },
        required: ["recipeName", "ingredients"],
      },
    },
  },
});
console.log(response.text);

Files

העלאה

העלאת קובץ:

לפני

Python

import requests
import pathlib
import google.generativeai as genai

# Download file
response = requests.get(
    'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)

file = genai.upload_file(path='a11.txt')

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content([
    'Can you summarize this file:',
    my_file
])
print(response.text)

אחרי

Python

import requests
import pathlib
from google import genai

client = genai.Client()

# Download file
response = requests.get(
    'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)

my_file = client.files.upload(file='a11.txt')

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents=[
        'Can you summarize this file:',
        my_file
    ]
)
print(response.text)

הצגה ואחזור

הצגת רשימה של קבצים שהועלו וקבלת קובץ שהועלה עם שם קובץ:

לפני

Python

import google.generativeai as genai

for file in genai.list_files():
  print(file.name)

file = genai.get_file(name=file.name)

אחרי

Python

from google import genai
client = genai.Client()

for file in client.files.list():
    print(file.name)

file = client.files.get(name=file.name)

מחיקה

כדי למחוק קובץ:

לפני

Python

import pathlib
import google.generativeai as genai

pathlib.Path('dummy.txt').write_text(dummy)
dummy_file = genai.upload_file(path='dummy.txt')

file = genai.delete_file(name=dummy_file.name)

אחרי

Python

import pathlib
from google import genai

client = genai.Client()

pathlib.Path('dummy.txt').write_text(dummy)
dummy_file = client.files.upload(file='dummy.txt')

response = client.files.delete(name=dummy_file.name)

שמירה במטמון של הקשרים

שמירת הקשר במטמון מאפשרת למשתמש להעביר את התוכן למודל פעם אחת, לשמור במטמון את טוקני הקלט, ואז להפנות לטוקנים שנשמרו במטמון בקריאות הבאות כדי להפחית את העלות.

לפני

Python

import requests
import pathlib
import google.generativeai as genai
from google.generativeai import caching

# Download file
response = requests.get(
    'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)

# Upload file
document = genai.upload_file(path="a11.txt")

# Create cache
apollo_cache = caching.CachedContent.create(
    model="gemini-1.5-flash-001",
    system_instruction="You are an expert at analyzing transcripts.",
    contents=[document],
)

# Generate response
apollo_model = genai.GenerativeModel.from_cached_content(
    cached_content=apollo_cache
)
response = apollo_model.generate_content("Find a lighthearted moment from this transcript")

JavaScript

import { GoogleAICacheManager, GoogleAIFileManager } from "@google/generative-ai/server";
import { GoogleGenerativeAI } from "@google/generative-ai";

const cacheManager = new GoogleAICacheManager("GOOGLE_API_KEY");
const fileManager = new GoogleAIFileManager("GOOGLE_API_KEY");

const uploadResult = await fileManager.uploadFile("path/to/a11.txt", {
  mimeType: "text/plain",
});

const cacheResult = await cacheManager.create({
  model: "models/gemini-1.5-flash",
  contents: [
    {
      role: "user",
      parts: [
        {
          fileData: {
            fileUri: uploadResult.file.uri,
            mimeType: uploadResult.file.mimeType,
          },
        },
      ],
    },
  ],
});

console.log(cacheResult);

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModelFromCachedContent(cacheResult);
const result = await model.generateContent(
  "Please summarize this transcript.",
);
console.log(result.response.text());

אחרי

Python

import requests
import pathlib
from google import genai
from google.genai import types

client = genai.Client()

# Check which models support caching.
for m in client.models.list():
  for action in m.supported_actions:
    if action == "createCachedContent":
      print(m.name)
      break

# Download file
response = requests.get(
    'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)

# Upload file
document = client.files.upload(file='a11.txt')

# Create cache
model='gemini-1.5-flash-001'
apollo_cache = client.caches.create(
      model=model,
      config={
          'contents': [document],
          'system_instruction': 'You are an expert at analyzing transcripts.',
      },
  )

# Generate response
response = client.models.generate_content(
    model=model,
    contents='Find a lighthearted moment from this transcript',
    config=types.GenerateContentConfig(
        cached_content=apollo_cache.name,
    )
)

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const filePath = path.join(media, "a11.txt");
const document = await ai.files.upload({
  file: filePath,
  config: { mimeType: "text/plain" },
});
console.log("Uploaded file name:", document.name);
const modelName = "gemini-1.5-flash";

const contents = [
  createUserContent(createPartFromUri(document.uri, document.mimeType)),
];

const cache = await ai.caches.create({
  model: modelName,
  config: {
    contents: contents,
    systemInstruction: "You are an expert analyzing transcripts.",
  },
});
console.log("Cache created:", cache);

const response = await ai.models.generateContent({
  model: modelName,
  contents: "Please summarize this transcript",
  config: { cachedContent: cache.name },
});
console.log("Response text:", response.text);

ספירת טוקנים

ספירת מספר האסימונים בבקשה.

לפני

Python

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.count_tokens(
    'The quick brown fox jumps over the lazy dog.')

JavaScript

 import { GoogleGenerativeAI } from "@google/generative-ai";

 const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY+);
 const model = genAI.getGenerativeModel({
   model: "gemini-1.5-flash",
 });

 // Count tokens in a prompt without calling text generation.
 const countResult = await model.countTokens(
   "The quick brown fox jumps over the lazy dog.",
 );

 console.log(countResult.totalTokens); // 11

 const generateResult = await model.generateContent(
   "The quick brown fox jumps over the lazy dog.",
 );

 // On the response for `generateContent`, use `usageMetadata`
 // to get separate input and output token counts
 // (`promptTokenCount` and `candidatesTokenCount`, respectively),
 // as well as the combined token count (`totalTokenCount`).
 console.log(generateResult.response.usageMetadata);
 // candidatesTokenCount and totalTokenCount depend on response, may vary
 // { promptTokenCount: 11, candidatesTokenCount: 124, totalTokenCount: 135 }

אחרי

Python

from google import genai

client = genai.Client()

response = client.models.count_tokens(
    model='gemini-2.0-flash',
    contents='The quick brown fox jumps over the lazy dog.',
)

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const prompt = "The quick brown fox jumps over the lazy dog.";
const countTokensResponse = await ai.models.countTokens({
  model: "gemini-2.0-flash",
  contents: prompt,
});
console.log(countTokensResponse.totalTokens);

const generateResponse = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: prompt,
});
console.log(generateResponse.usageMetadata);

יצירת תמונות

ליצור תמונות:

לפני

Python

#pip install https://github.com/google-gemini/generative-ai-python@imagen
import google.generativeai as genai

imagen = genai.ImageGenerationModel(
    "imagen-3.0-generate-001")
gen_images = imagen.generate_images(
    prompt="Robot holding a red skateboard",
    number_of_images=1,
    safety_filter_level="block_low_and_above",
    person_generation="allow_adult",
    aspect_ratio="3:4",
)

אחרי

Python

from google import genai

client = genai.Client()

gen_images = client.models.generate_images(
    model='imagen-3.0-generate-001',
    prompt='Robot holding a red skateboard',
    config=types.GenerateImagesConfig(
        number_of_images= 1,
        safety_filter_level= "BLOCK_LOW_AND_ABOVE",
        person_generation= "ALLOW_ADULT",
        aspect_ratio= "3:4",
    )
)

for n, image in enumerate(gen_images.generated_images):
    pathlib.Path(f'{n}.png').write_bytes(
        image.image.image_bytes)

הטמעת תוכן

יצירת הטמעות של תוכן.

לפני

Python

import google.generativeai as genai

response = genai.embed_content(
  model='models/gemini-embedding-001',
  content='Hello world'
)

JavaScript

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
  model: "gemini-embedding-001",
});

const result = await model.embedContent("Hello world!");

console.log(result.embedding);

אחרי

Python

from google import genai

client = genai.Client()

response = client.models.embed_content(
  model='gemini-embedding-001',
  contents='Hello world',
)

JavaScript

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const text = "Hello World!";
const result = await ai.models.embedContent({
  model: "gemini-embedding-001",
  contents: text,
  config: { outputDimensionality: 10 },
});
console.log(result.embeddings);

כוונון מודל

ליצור מודל שעבר כוונון ולהשתמש בו.

ערכת ה-SDK החדשה מפשטת את תהליך ההתאמה באמצעות client.tunings.tune, שמפעילה את משימת ההתאמה ומבצעת סקר עד שהמשימה מסתיימת.

לפני

Python

import google.generativeai as genai
import random

# create tuning model
train_data = {}
for i in range(1, 6):
  key = f'input {i}'
  value = f'output {i}'
  train_data[key] = value

name = f'generate-num-{random.randint(0,10000)}'
operation = genai.create_tuned_model(
    source_model='models/gemini-1.5-flash-001-tuning',
    training_data=train_data,
    id = name,
    epoch_count = 5,
    batch_size=4,
    learning_rate=0.001,
)
# wait for tuning complete
tuningProgress = operation.result()

# generate content with the tuned model
model = genai.GenerativeModel(model_name=f'tunedModels/{name}')
response = model.generate_content('55')

אחרי

Python

from google import genai
from google.genai import types

client = genai.Client()

# Check which models are available for tuning.
for m in client.models.list():
  for action in m.supported_actions:
    if action == "createTunedModel":
      print(m.name)
      break

# create tuning model
training_dataset=types.TuningDataset(
        examples=[
            types.TuningExample(
                text_input=f'input {i}',
                output=f'output {i}',
            )
            for i in range(5)
        ],
    )
tuning_job = client.tunings.tune(
    base_model='models/gemini-1.5-flash-001-tuning',
    training_dataset=training_dataset,
    config=types.CreateTuningJobConfig(
        epoch_count= 5,
        batch_size=4,
        learning_rate=0.001,
        tuned_model_display_name="test tuned model"
    )
)

# generate content with the tuned model
response = client.models.generate_content(
    model=tuning_job.tuned_model.model,
    contents='55',
)