Tool use with Live API

Mithilfe des Tools kann die Live API nicht nur Unterhaltungen führen, sondern auch Aktionen in der realen Welt ausführen und externen Kontext einbeziehen, während eine Echtzeitverbindung aufrechterhalten wird. Mit der Live API können Sie Tools wie Funktionsaufruf, Codeausführung und Google Suche definieren.

Unterstützte Tools – Übersicht

Hier finden Sie einen kurzen Überblick über die für jedes Modell verfügbaren Tools:

Tool Kaskadenmodelle
gemini-live-2.5-flash-preview
gemini-2.0-flash-live-001
gemini-2.5-flash-preview-native-audio-dialog gemini-2.5-flash-exp-native-audio-thinking-dialog
Suche Ja Ja Ja
Funktionsaufrufe Ja Ja Nein
Codeausführung Ja Nein Nein
URL-Kontext Ja Nein Nein

Funktionsaufrufe

Die Live API unterstützt Funktionsaufrufe, genau wie normale Anfragen zur Inhaltserstellung. Mit Funktionsaufrufen kann die Live API mit externen Daten und Programmen interagieren, wodurch die Möglichkeiten Ihrer Anwendungen erheblich erweitert werden.

Sie können Funktionsdeklarationen als Teil der Sitzungskonfiguration definieren. Nachdem der Client Toolaufrufe erhalten hat, sollte er mit der Methode session.send_tool_response eine Liste von FunctionResponse-Objekten zurückgeben.

Weitere Informationen finden Sie in der Anleitung zu Funktionsaufrufen.

Python

import asyncio
from google import genai
from google.genai import types

client = genai.Client()
model = "gemini-live-2.5-flash-preview"

# Simple function definitions
turn_on_the_lights = {"name": "turn_on_the_lights"}
turn_off_the_lights = {"name": "turn_off_the_lights"}

tools = [{"function_declarations": [turn_on_the_lights, turn_off_the_lights]}]
config = {"response_modalities": ["TEXT"], "tools": tools}

async def main():
    async with client.aio.live.connect(model=model, config=config) as session:
        prompt = "Turn on the lights please"
        await session.send_client_content(turns={"parts": [{"text": prompt}]})

        async for chunk in session.receive():
            if chunk.server_content:
                if chunk.text is not None:
                    print(chunk.text)
            elif chunk.tool_call:
                function_responses = []
                for fc in chunk.tool_call.function_calls:
                    function_response = types.FunctionResponse(
                        id=fc.id,
                        name=fc.name,
                        response={ "result": "ok" } # simple, hard-coded function response
                    )
                    function_responses.append(function_response)

                await session.send_tool_response(function_responses=function_responses)

if __name__ == "__main__":
    asyncio.run(main())

JavaScript

import { GoogleGenAI, Modality } from '@google/genai';

const ai = new GoogleGenAI({});
const model = 'gemini-live-2.5-flash-preview';

// Simple function definitions
const turn_on_the_lights = { name: "turn_on_the_lights" } // , description: '...', parameters: { ... }
const turn_off_the_lights = { name: "turn_off_the_lights" }

const tools = [{ functionDeclarations: [turn_on_the_lights, turn_off_the_lights] }]

const config = {
  responseModalities: [Modality.TEXT],
  tools: tools
}

async function live() {
  const responseQueue = [];

  async function waitMessage() {
    let done = false;
    let message = undefined;
    while (!done) {
      message = responseQueue.shift();
      if (message) {
        done = true;
      } else {
        await new Promise((resolve) => setTimeout(resolve, 100));
      }
    }
    return message;
  }

  async function handleTurn() {
    const turns = [];
    let done = false;
    while (!done) {
      const message = await waitMessage();
      turns.push(message);
      if (message.serverContent && message.serverContent.turnComplete) {
        done = true;
      } else if (message.toolCall) {
        done = true;
      }
    }
    return turns;
  }

  const session = await ai.live.connect({
    model: model,
    callbacks: {
      onopen: function () {
        console.debug('Opened');
      },
      onmessage: function (message) {
        responseQueue.push(message);
      },
      onerror: function (e) {
        console.debug('Error:', e.message);
      },
      onclose: function (e) {
        console.debug('Close:', e.reason);
      },
    },
    config: config,
  });

  const inputTurns = 'Turn on the lights please';
  session.sendClientContent({ turns: inputTurns });

  let turns = await handleTurn();

  for (const turn of turns) {
    if (turn.serverContent && turn.serverContent.modelTurn && turn.serverContent.modelTurn.parts) {
      for (const part of turn.serverContent.modelTurn.parts) {
        if (part.text) {
          console.debug('Received text: %s\n', part.text);
        }
      }
    }
    else if (turn.toolCall) {
      const functionResponses = [];
      for (const fc of turn.toolCall.functionCalls) {
        functionResponses.push({
          id: fc.id,
          name: fc.name,
          response: { result: "ok" } // simple, hard-coded function response
        });
      }

      console.debug('Sending tool response...\n');
      session.sendToolResponse({ functionResponses: functionResponses });
    }
  }

  // Check again for new messages
  turns = await handleTurn();

  for (const turn of turns) {
    if (turn.serverContent && turn.serverContent.modelTurn && turn.serverContent.modelTurn.parts) {
      for (const part of turn.serverContent.modelTurn.parts) {
        if (part.text) {
          console.debug('Received text: %s\n', part.text);
        }
      }
    }
  }

  session.close();
}

async function main() {
  await live().catch((e) => console.error('got error', e));
}

main();

Anhand eines einzelnen Prompts kann das Modell mehrere Funktionsaufrufe und den Code generieren, der zum Verketten der Ausgaben erforderlich ist. Dieser Code wird in einer Sandbox-Umgebung ausgeführt und generiert nachfolgende BidiGenerateContentToolCall-Nachrichten.

Asynchroner Funktionsaufruf

Funktionsaufrufe werden standardmäßig sequenziell ausgeführt. Das bedeutet, dass die Ausführung pausiert, bis die Ergebnisse der einzelnen Funktionsaufrufe verfügbar sind. So wird eine sequenzielle Verarbeitung sichergestellt. Das bedeutet, dass Sie während der Ausführung der Funktionen nicht mehr mit dem Modell interagieren können.

Wenn Sie die Unterhaltung nicht blockieren möchten, können Sie dem Modell mitteilen, die Funktionen asynchron auszuführen. Dazu müssen Sie den Funktionsdefinitionen zuerst ein behavior hinzufügen:

Python

  # Non-blocking function definitions
  turn_on_the_lights = {"name": "turn_on_the_lights", "behavior": "NON_BLOCKING"} # turn_on_the_lights will run asynchronously
  turn_off_the_lights = {"name": "turn_off_the_lights"} # turn_off_the_lights will still pause all interactions with the model

JavaScript

import { GoogleGenAI, Modality, Behavior } from '@google/genai';

// Non-blocking function definitions
const turn_on_the_lights = {name: "turn_on_the_lights", behavior: Behavior.NON_BLOCKING}

// Blocking function definitions
const turn_off_the_lights = {name: "turn_off_the_lights"}

const tools = [{ functionDeclarations: [turn_on_the_lights, turn_off_the_lights] }]

NON-BLOCKING sorgt dafür, dass die Funktion asynchron ausgeführt wird, während Sie weiterhin mit dem Modell interagieren können.

Anschließend müssen Sie dem Modell mit dem Parameter scheduling mitteilen, wie es sich verhalten soll, wenn es FunctionResponse empfängt. Es kann folgende Funktionen haben:

  • Unterbricht die Ausführung und teilt Ihnen sofort die Antwort mit, die es erhalten hat (scheduling="INTERRUPT"),
  • Warten Sie, bis der Vorgang abgeschlossen ist (scheduling="WHEN_IDLE").
  • Sie können auch nichts tun und dieses Wissen später in der Diskussion nutzen. scheduling="SILENT"

Python

# for a non-blocking function definition, apply scheduling in the function response:
  function_response = types.FunctionResponse(
      id=fc.id,
      name=fc.name,
      response={
          "result": "ok",
          "scheduling": "INTERRUPT" # Can also be WHEN_IDLE or SILENT
      }
  )

JavaScript

import { GoogleGenAI, Modality, Behavior, FunctionResponseScheduling } from '@google/genai';

// for a non-blocking function definition, apply scheduling in the function response:
const functionResponse = {
  id: fc.id,
  name: fc.name,
  response: {
    result: "ok",
    scheduling: FunctionResponseScheduling.INTERRUPT  // Can also be WHEN_IDLE or SILENT
  }
}

Codeausführung

Sie können die Codeausführung als Teil der Sitzungskonfiguration definieren. So kann die Live API Python-Code generieren und ausführen sowie Berechnungen dynamisch ausführen, um die Ergebnisse zu verbessern. Weitere Informationen finden Sie in der Anleitung zur Codeausführung.

Python

import asyncio
from google import genai
from google.genai import types

client = genai.Client()
model = "gemini-live-2.5-flash-preview"

tools = [{'code_execution': {}}]
config = {"response_modalities": ["TEXT"], "tools": tools}

async def main():
    async with client.aio.live.connect(model=model, config=config) as session:
        prompt = "Compute the largest prime palindrome under 100000."
        await session.send_client_content(turns={"parts": [{"text": prompt}]})

        async for chunk in session.receive():
            if chunk.server_content:
                if chunk.text is not None:
                    print(chunk.text)

                model_turn = chunk.server_content.model_turn
                if model_turn:
                    for part in model_turn.parts:
                      if part.executable_code is not None:
                        print(part.executable_code.code)

                      if part.code_execution_result is not None:
                        print(part.code_execution_result.output)

if __name__ == "__main__":
    asyncio.run(main())

JavaScript

import { GoogleGenAI, Modality } from '@google/genai';

const ai = new GoogleGenAI({});
const model = 'gemini-live-2.5-flash-preview';

const tools = [{codeExecution: {}}]
const config = {
  responseModalities: [Modality.TEXT],
  tools: tools
}

async function live() {
  const responseQueue = [];

  async function waitMessage() {
    let done = false;
    let message = undefined;
    while (!done) {
      message = responseQueue.shift();
      if (message) {
        done = true;
      } else {
        await new Promise((resolve) => setTimeout(resolve, 100));
      }
    }
    return message;
  }

  async function handleTurn() {
    const turns = [];
    let done = false;
    while (!done) {
      const message = await waitMessage();
      turns.push(message);
      if (message.serverContent && message.serverContent.turnComplete) {
        done = true;
      } else if (message.toolCall) {
        done = true;
      }
    }
    return turns;
  }

  const session = await ai.live.connect({
    model: model,
    callbacks: {
      onopen: function () {
        console.debug('Opened');
      },
      onmessage: function (message) {
        responseQueue.push(message);
      },
      onerror: function (e) {
        console.debug('Error:', e.message);
      },
      onclose: function (e) {
        console.debug('Close:', e.reason);
      },
    },
    config: config,
  });

  const inputTurns = 'Compute the largest prime palindrome under 100000.';
  session.sendClientContent({ turns: inputTurns });

  const turns = await handleTurn();

  for (const turn of turns) {
    if (turn.serverContent && turn.serverContent.modelTurn && turn.serverContent.modelTurn.parts) {
      for (const part of turn.serverContent.modelTurn.parts) {
        if (part.text) {
          console.debug('Received text: %s\n', part.text);
        }
        else if (part.executableCode) {
          console.debug('executableCode: %s\n', part.executableCode.code);
        }
        else if (part.codeExecutionResult) {
          console.debug('codeExecutionResult: %s\n', part.codeExecutionResult.output);
        }
      }
    }
  }

  session.close();
}

async function main() {
  await live().catch((e) => console.error('got error', e));
}

main();

Sie können die Fundierung mit der Google Suche im Rahmen der Sitzungskonfiguration aktivieren. Dadurch wird die Genauigkeit der Live API erhöht und Halluzinationen werden verhindert. Weitere Informationen finden Sie in der Anleitung zur Erdung.

Python

import asyncio
from google import genai
from google.genai import types

client = genai.Client()
model = "gemini-live-2.5-flash-preview"

tools = [{'google_search': {}}]
config = {"response_modalities": ["TEXT"], "tools": tools}

async def main():
    async with client.aio.live.connect(model=model, config=config) as session:
        prompt = "When did the last Brazil vs. Argentina soccer match happen?"
        await session.send_client_content(turns={"parts": [{"text": prompt}]})

        async for chunk in session.receive():
            if chunk.server_content:
                if chunk.text is not None:
                    print(chunk.text)

                # The model might generate and execute Python code to use Search
                model_turn = chunk.server_content.model_turn
                if model_turn:
                    for part in model_turn.parts:
                      if part.executable_code is not None:
                        print(part.executable_code.code)

                      if part.code_execution_result is not None:
                        print(part.code_execution_result.output)

if __name__ == "__main__":
    asyncio.run(main())

JavaScript

import { GoogleGenAI, Modality } from '@google/genai';

const ai = new GoogleGenAI({});
const model = 'gemini-live-2.5-flash-preview';

const tools = [{googleSearch: {}}]
const config = {
  responseModalities: [Modality.TEXT],
  tools: tools
}

async function live() {
  const responseQueue = [];

  async function waitMessage() {
    let done = false;
    let message = undefined;
    while (!done) {
      message = responseQueue.shift();
      if (message) {
        done = true;
      } else {
        await new Promise((resolve) => setTimeout(resolve, 100));
      }
    }
    return message;
  }

  async function handleTurn() {
    const turns = [];
    let done = false;
    while (!done) {
      const message = await waitMessage();
      turns.push(message);
      if (message.serverContent && message.serverContent.turnComplete) {
        done = true;
      } else if (message.toolCall) {
        done = true;
      }
    }
    return turns;
  }

  const session = await ai.live.connect({
    model: model,
    callbacks: {
      onopen: function () {
        console.debug('Opened');
      },
      onmessage: function (message) {
        responseQueue.push(message);
      },
      onerror: function (e) {
        console.debug('Error:', e.message);
      },
      onclose: function (e) {
        console.debug('Close:', e.reason);
      },
    },
    config: config,
  });

  const inputTurns = 'When did the last Brazil vs. Argentina soccer match happen?';
  session.sendClientContent({ turns: inputTurns });

  const turns = await handleTurn();

  for (const turn of turns) {
    if (turn.serverContent && turn.serverContent.modelTurn && turn.serverContent.modelTurn.parts) {
      for (const part of turn.serverContent.modelTurn.parts) {
        if (part.text) {
          console.debug('Received text: %s\n', part.text);
        }
        else if (part.executableCode) {
          console.debug('executableCode: %s\n', part.executableCode.code);
        }
        else if (part.codeExecutionResult) {
          console.debug('codeExecutionResult: %s\n', part.codeExecutionResult.output);
        }
      }
    }
  }

  session.close();
}

async function main() {
  await live().catch((e) => console.error('got error', e));
}

main();

Mehrere Tools kombinieren

Du kannst mehrere Tools innerhalb der Live API kombinieren, um die Funktionen deiner Anwendung noch weiter zu verbessern:

Python

prompt = """
Hey, I need you to do three things for me.

1. Compute the largest prime palindrome under 100000.
2. Then use Google Search to look up information about the largest earthquake in California the week of Dec 5 2024?
3. Turn on the lights

Thanks!
"""

tools = [
    {"google_search": {}},
    {"code_execution": {}},
    {"function_declarations": [turn_on_the_lights, turn_off_the_lights]},
]

config = {"response_modalities": ["TEXT"], "tools": tools}

# ... remaining model call

JavaScript

const prompt = `Hey, I need you to do three things for me.

1. Compute the largest prime palindrome under 100000.
2. Then use Google Search to look up information about the largest earthquake in California the week of Dec 5 2024?
3. Turn on the lights

Thanks!
`

const tools = [
  { googleSearch: {} },
  { codeExecution: {} },
  { functionDeclarations: [turn_on_the_lights, turn_off_the_lights] }
]

const config = {
  responseModalities: [Modality.TEXT],
  tools: tools
}

// ... remaining model call

Nächste Schritte