API for creating and training a text classification model.
mediapipe_model_maker.text_classifier.TextClassifier(
model_spec: Any, label_names: Sequence[str], shuffle: bool
)
Args |
model_spec
|
Specification for the model.
|
label_names
|
A list of label names for the classes.
|
shuffle
|
Whether the dataset should be shuffled.
|
Methods
create
View source
@classmethod
create(
train_data: mediapipe_model_maker.text_classifier.Dataset
,
validation_data: mediapipe_model_maker.text_classifier.Dataset
,
options: mediapipe_model_maker.text_classifier.TextClassifierOptions
) -> 'TextClassifier'
Factory function that creates and trains a text classifier.
Note that train_data
and validation_data
are expected to share the same
label_names
since they should be split from the same dataset.
Args |
train_data
|
Training data.
|
validation_data
|
Validation data.
|
options
|
Options for creating and training the text classifier.
|
Returns |
A text classifier.
|
Raises |
ValueError if train_data and validation_data do not have the
same label_names or options contains an unknown supported_model
|
evaluate
View source
evaluate(
data: mediapipe_model_maker.model_util.dataset.Dataset
,
batch_size: int = 32,
desired_precisions: Optional[Sequence[float]] = None,
desired_recalls: Optional[Sequence[float]] = None
) -> Any
Overrides Classifier.evaluate().
Args |
data
|
Evaluation dataset. Must be a TextClassifier Dataset.
|
batch_size
|
Number of samples per evaluation step.
|
desired_precisions
|
If specified, adds a RecallAtPrecision metric per
desired_precisions[i] entry which tracks the recall given the constraint
on precision. Only supported for binary classification.
|
desired_recalls
|
If specified, adds a PrecisionAtRecall metric per
desired_recalls[i] entry which tracks the precision given the constraint
on recall. Only supported for binary classification.
|
Returns |
The loss value and accuracy.
|
Raises |
ValueError if data is not a TextClassifier Dataset.
|
export_labels
View source
export_labels(
export_dir: str, label_filename: str = 'labels.txt'
)
Exports classification labels into a label file.
Args |
export_dir
|
The directory to save exported files.
|
label_filename
|
File name to save labels model. The full export path is
{export_dir}/{label_filename}.
|
export_model
View source
export_model(
model_name: str = 'model.tflite',
quantization_config: Optional[mediapipe_model_maker.quantization.QuantizationConfig
] = None
)
Converts and saves the model to a TFLite file with metadata included.
Note that only the TFLite file is needed for deployment. This function also
saves a metadata.json file to the same directory as the TFLite file which
can be used to interpret the metadata content in the TFLite file.
Args |
model_name
|
File name to save TFLite model with metadata. The full export
path is {self._hparams.export_dir}/{model_name}.
|
quantization_config
|
The configuration for model quantization.
|
export_tflite
View source
export_tflite(
export_dir: str,
tflite_filename: str = 'model.tflite',
quantization_config: Optional[mediapipe_model_maker.quantization.QuantizationConfig
] = None,
preprocess: Optional[Callable[..., bool]] = None
)
Converts the model to requested formats.
Args |
export_dir
|
The directory to save exported files.
|
tflite_filename
|
File name to save TFLite model. The full export path is
{export_dir}/{tflite_filename}.
|
quantization_config
|
The configuration for model quantization.
|
preprocess
|
A callable to preprocess the representative dataset for
quantization. The callable takes three arguments in order: feature,
label, and is_training.
|
load_bert_classifier
View source
@classmethod
load_bert_classifier(
options: mediapipe_model_maker.text_classifier.TextClassifierOptions
,
saved_model_path: str,
label_names: Sequence[str]
) -> 'TextClassifier'
save_model
View source
save_model(
model_name: str = 'saved_model'
)
Saves the model in SavedModel format.
For more information, see https://www.tensorflow.org/guide/saved_model
Args |
model_name
|
Name of the saved model.
|
summary
View source
summary()
Prints a summary of the model.