คำแนะนำการฝังรูปภาพสำหรับ Android

งานโปรแกรมฝังรูปภาพ MediaPipe ช่วยให้คุณแปลงข้อมูลรูปภาพเป็นการนำเสนอตัวเลขเพื่อทำงานประมวลผลรูปภาพที่เกี่ยวข้องกับ ML เช่น การเปรียบเทียบความคล้ายคลึงของรูปภาพ 2 รูป วิธีการเหล่านี้แสดงวิธีใช้เครื่องมือฝังรูปภาพกับแอป Android

ดูข้อมูลเพิ่มเติมเกี่ยวกับความสามารถ รูปแบบ และตัวเลือกการกําหนดค่าของงานนี้ได้ที่ภาพรวม

ตัวอย่างโค้ด

โค้ดตัวอย่างของ MediaPipe Tasks คือการใช้งานแอปโปรแกรมฝังรูปภาพสําหรับ Android อย่างง่าย ตัวอย่างนี้ใช้กล้องในอุปกรณ์ Android จริงเพื่อฝังรูปภาพอย่างต่อเนื่อง และยังสามารถเรียกใช้โปรแกรมฝังในไฟล์รูปภาพที่จัดเก็บไว้ในอุปกรณ์ได้ด้วย

คุณสามารถใช้แอปนี้เป็นจุดเริ่มต้นสำหรับแอป Android ของคุณเอง หรือใช้อ้างอิงเมื่อแก้ไขแอปที่มีอยู่ โค้ดตัวอย่างของเครื่องมือฝังรูปภาพโฮสต์อยู่ใน GitHub

ดาวน์โหลดรหัส

วิธีการต่อไปนี้แสดงวิธีสร้างสำเนาโค้ดตัวอย่างในเครื่องโดยใช้เครื่องมือบรรทัดคำสั่ง git

วิธีดาวน์โหลดโค้ดตัวอย่าง

  1. โคลนที่เก็บ Git โดยใช้คําสั่งต่อไปนี้
    git clone https://github.com/google-ai-edge/mediapipe-samples
    
  2. (ไม่บังคับ) กำหนดค่าอินสแตนซ์ git ให้ใช้การตรวจสอบแบบเบาบางเพื่อให้คุณมีไฟล์สำหรับแอปตัวอย่างเครื่องมือฝังรูปภาพเท่านั้น โดยทำดังนี้
    cd mediapipe
    git sparse-checkout init --cone
    git sparse-checkout set examples/image_embedder/android
    

หลังจากสร้างโค้ดตัวอย่างเวอร์ชันในเครื่องแล้ว คุณสามารถนําเข้าโปรเจ็กต์ไปยัง Android Studio และเรียกใช้แอปได้ ดูวิธีการได้ที่คู่มือการตั้งค่าสําหรับ Android

คอมโพเนนต์หลัก

ไฟล์ต่อไปนี้มีโค้ดสําคัญสําหรับตัวอย่างแอปพลิเคชันโปรแกรมฝังรูปภาพนี้

  • ImageEmbedderHelper.kt: เริ่มต้นเครื่องมือฝังรูปภาพ รวมถึงจัดการโมเดลและการเลือกผู้รับมอบสิทธิ์
  • MainActivity.kt: ใช้แอปพลิเคชันและประกอบคอมโพเนนต์อินเทอร์เฟซผู้ใช้

ตั้งค่า

ส่วนนี้จะอธิบายขั้นตอนสำคัญในการตั้งค่าสภาพแวดล้อมการพัฒนาและโปรเจ็กต์โค้ดเพื่อใช้เครื่องมือฝังรูปภาพ ดูข้อมูลทั่วไปเกี่ยวกับการตั้งค่าสภาพแวดล้อมการพัฒนาเพื่อใช้งาน MediaPipe รวมถึงข้อกำหนดเวอร์ชันแพลตฟอร์มได้ที่คู่มือการตั้งค่าสำหรับ Android

การอ้างอิง

เครื่องมือฝังรูปภาพใช้ไลบรารี com.google.mediapipe:tasks-vision เพิ่ม Dependency นี้ลงในไฟล์ build.gradle ของโปรเจ็กต์การพัฒนาแอป Android นําเข้าข้อกําหนดเบื้องต้นที่จําเป็นด้วยโค้ดต่อไปนี้

dependencies {
    ...
    implementation 'com.google.mediapipe:tasks-vision:latest.release'
}

รุ่น

งานโปรแกรมฝังรูปภาพของ MediaPipe ต้องใช้โมเดลที่ผ่านการฝึกซึ่งเข้ากันได้กับงานนี้ ดูข้อมูลเพิ่มเติมเกี่ยวกับโมเดลที่ผ่านการฝึกอบรมแล้วสําหรับโปรแกรมฝังรูปภาพได้ที่ส่วนโมเดลในภาพรวมของงาน

เลือกและดาวน์โหลดโมเดล จากนั้นจัดเก็บไว้ในไดเรกทอรีโปรเจ็กต์

<dev-project-root>/src/main/assets

ระบุเส้นทางของโมเดลภายในพารามิเตอร์ ModelAssetPath ในโค้ดตัวอย่าง ระบบจะกำหนดโมเดลในฟังก์ชัน setupImageEmbedder() ในไฟล์ ImageEmbedderHelper.kt ดังนี้

ใช้เมธอด BaseOptions.Builder.setModelAssetPath() เพื่อระบุเส้นทางที่โมเดลใช้ วิธีการนี้จะกล่าวถึงในตัวอย่างโค้ดในส่วนถัดไป

สร้างงาน

คุณสามารถใช้ฟังก์ชัน createFromOptions เพื่อสร้างงาน ฟังก์ชัน createFromOptions จะยอมรับตัวเลือกการกําหนดค่าเพื่อตั้งค่าตัวเลือกผู้ฝัง ดูข้อมูลเพิ่มเติมเกี่ยวกับตัวเลือกการกำหนดค่าได้ที่ภาพรวมการกำหนดค่า

งานโปรแกรมฝังรูปภาพรองรับข้อมูลอินพุต 3 ประเภท ได้แก่ ภาพนิ่ง ไฟล์วิดีโอ และสตรีมวิดีโอสด คุณต้องระบุโหมดการทํางานที่สอดคล้องกับประเภทข้อมูลอินพุตเมื่อสร้างงาน เลือกแท็บที่สอดคล้องกับประเภทข้อมูลอินพุตเพื่อดูวิธีสร้างงานและเรียกใช้การอนุมาน

รูปภาพ

ImageEmbedderOptions options =
  ImageEmbedderOptions.builder()
    .setBaseOptions(
      BaseOptions.builder().setModelAssetPath("model.tflite").build())
    .setQuantize(true)
    .setRunningMode(RunningMode.IMAGE)
    .build();
imageEmbedder = ImageEmbedder.createFromOptions(context, options);
    

วิดีโอ

ImageEmbedderOptions options =
  ImageEmbedderOptions.builder()
    .setBaseOptions(
      BaseOptions.builder().setModelAssetPath("model.tflite").build())
    .setQuantize(true)
    .setRunningMode(RunningMode.VIDEO)
    .build();
imageEmbedder = ImageEmbedder.createFromOptions(context, options);
    

ไลฟ์สด

ImageEmbedderOptions options =
  ImageEmbedderOptions.builder()
    .setBaseOptions(
      BaseOptions.builder().setModelAssetPath("model.tflite").build())
    .setQuantize(true)
    .setRunningMode(RunningMode.LIVE_STREAM)
    .setResultListener((result, inputImage) -> {
         // Process the embedding result here.
    })
    .build();
imageEmbedder = ImageEmbedder.createFromOptions(context, options);
    

การใช้โค้ดตัวอย่างช่วยให้ผู้ใช้สลับระหว่างโหมดการประมวลผลได้ แนวทางนี้ทำให้โค้ดการสร้างงานมีความซับซ้อนมากขึ้นและอาจไม่เหมาะกับ Use Case ของคุณ คุณจะเห็นโค้ดนี้ในฟังก์ชัน setupImageEmbedder() ในไฟล์ ImageEmbedderHelper.kt

ตัวเลือกการกำหนดค่า

งานนี้มีตัวเลือกการกำหนดค่าต่อไปนี้สำหรับแอป Android

ชื่อตัวเลือก คำอธิบาย ช่วงของค่า ค่าเริ่มต้น
runningMode ตั้งค่าโหมดการทํางานสําหรับงาน โดยโหมดมี 3 แบบ ดังนี้

รูปภาพ: โหมดสำหรับอินพุตรูปภาพเดียว

วิดีโอ: โหมดสำหรับเฟรมที่ถอดรหัสของวิดีโอ

LIVE_STREAM: โหมดสตรีมแบบสดของข้อมูลอินพุต เช่น จากกล้อง ในโหมดนี้ คุณต้องเรียกใช้ resultListener เพื่อตั้งค่า Listener เพื่อรับผลลัพธ์แบบไม่พร้อมกัน
{IMAGE, VIDEO, LIVE_STREAM} IMAGE
l2_normalize กำหนดว่าจะปรับค่าเวกเตอร์ฟีเจอร์ที่แสดงผลด้วย L2 หรือไม่ ใช้ตัวเลือกนี้เฉพาะในกรณีที่โมเดลไม่มีการดำเนินการ L2_NORMALIZATION ของ TFLite เดิมอยู่แล้ว ซึ่งในกรณีส่วนใหญ่จะเป็นเช่นนั้นอยู่แล้ว และระบบจะทำการแปลง L2 ผ่านการอนุมาน TFLite โดยไม่จำเป็นต้องใช้ตัวเลือกนี้ Boolean False
quantize ควรแปลงการฝังที่แสดงผลเป็นไบต์ผ่านการแปลงเชิงสเกลหรือไม่ ระบบจะถือว่าการฝังมีรูปแบบเป็นหน่วยโดยปริยาย และรับประกันว่ามิติข้อมูลใดๆ จะมีค่าอยู่ในช่วง [-1.0, 1.0] ใช้ตัวเลือก l2_normalize หากไม่ใช่กรณีนี้ Boolean False
resultListener ตั้งค่าโปรแกรมรับฟังผลลัพธ์ให้รับผลการฝังแบบไม่พร้อมกันเมื่อโปรแกรมฝังรูปภาพอยู่ในโหมดสตรีมแบบสด ใช้ได้เมื่อตั้งค่าโหมดการทํางานเป็น LIVE_STREAM เท่านั้น ไม่มี ไม่ได้ตั้งค่า
errorListener ตั้งค่าโปรแกรมรับฟังข้อผิดพลาด (ไม่บังคับ) ไม่มี ไม่ได้ตั้งค่า

เตรียมข้อมูล

เครื่องมือฝังรูปภาพใช้ได้กับรูปภาพ ไฟล์วิดีโอ และวิดีโอสตรีมแบบสด งานจะจัดการการประมวลผลข้อมูลอินพุตก่อนการประมวลผล ซึ่งรวมถึงการปรับขนาด การหมุน และการปรับค่าให้เป็นไปตามมาตรฐาน

คุณต้องแปลงรูปภาพหรือเฟรมอินพุตเป็นออบเจ็กต์ com.google.mediapipe.framework.image.MPImage ก่อนส่งไปยังงานโปรแกรมฝังรูปภาพ

รูปภาพ

import com.google.mediapipe.framework.image.BitmapImageBuilder;
import com.google.mediapipe.framework.image.MPImage;

// Load an image on the users device as a Bitmap object using BitmapFactory.

// Convert an Androids Bitmap object to a MediaPipes Image object.
Image mpImage = new BitmapImageBuilder(bitmap).build();
    

วิดีโอ

import com.google.mediapipe.framework.image.BitmapImageBuilder;
import com.google.mediapipe.framework.image.MPImage;

// Load a video file on the user's device using MediaMetadataRetriever

// From the videos metadata, load the METADATA_KEY_DURATION and
// METADATA_KEY_VIDEO_FRAME_COUNT value. Youll need them
// to calculate the timestamp of each frame later.

// Loop through the video and load each frame as a Bitmap object.

// Convert the Androids Bitmap object to a MediaPipes Image object.
Image mpImage = new BitmapImageBuilder(frame).build();
    

ไลฟ์สด

import com.google.mediapipe.framework.image.MediaImageBuilder;
import com.google.mediapipe.framework.image.MPImage;

// Create a CameraXs ImageAnalysis to continuously receive frames
// from the devices camera. Configure it to output frames in RGBA_8888
// format to match with what is required by the model.

// For each Androids ImageProxy object received from the ImageAnalysis,
// extract the encapsulated Androids Image object and convert it to
// a MediaPipes Image object.
android.media.Image mediaImage = imageProxy.getImage()
Image mpImage = new MediaImageBuilder(mediaImage).build();
    

ในโค้ดตัวอย่าง ระบบจะจัดการการเตรียมข้อมูลในไฟล์ ImageEmbedderHelper.kt

เรียกใช้งาน

คุณสามารถเรียกใช้ฟังก์ชัน embed ที่สอดคล้องกับโหมดการทํางานเพื่อเรียกใช้การอนุมาน Image Embedder API จะแสดงผลเวกเตอร์การฝังสําหรับรูปภาพหรือเฟรมที่ป้อน

รูปภาพ

ImageEmbedderResult embedderResult = imageEmbedder.embed(image);
    

วิดีโอ

// Calculate the timestamp in milliseconds of the current frame.
long frame_timestamp_ms = 1000 * video_duration * frame_index / frame_count;

// Run inference on the frame.
ImageEmbedderResult embedderResult =
    imageEmbedder.embedForVideo(image, frameTimestampMs);
    

ไลฟ์สด

// Run inference on the frame. The embedding results will be available
// via the `resultListener` provided in the `ImageEmbedderOptions` when
// the image embedder was created.
imageEmbedder.embedAsync(image, frameTimestampMs);
    

โปรดทราบดังต่อไปนี้

  • เมื่อทำงานในโหมดวิดีโอหรือโหมดสตรีมแบบสด คุณต้องระบุการประทับเวลาของเฟรมอินพุตให้กับงานโปรแกรมฝังรูปภาพด้วย
  • เมื่อทำงานในโหมดรูปภาพหรือวิดีโอ งานโปรแกรมฝังรูปภาพจะบล็อกเธรดปัจจุบันจนกว่าจะประมวลผลรูปภาพหรือเฟรมอินพุตเสร็จ ดำเนินการประมวลผลในเธรดแบ็กกราวด์เพื่อหลีกเลี่ยงการบล็อกเธรดปัจจุบัน
  • เมื่อทำงานในโหมดสตรีมแบบสด งานโปรแกรมฝังรูปภาพจะไม่บล็อกเธรดปัจจุบัน แต่จะแสดงผลทันที โดยจะเรียกใช้โปรแกรมรับฟังผลลัพธ์พร้อมผลการตรวจจับทุกครั้งที่ประมวลผลเฟรมอินพุตเสร็จแล้ว หากมีการเรียกใช้ฟังก์ชัน embedAsync เมื่องานโปรแกรมฝังรูปภาพไม่ว่างประมวลผลเฟรมอื่น งานจะละเว้นเฟรมอินพุตใหม่

ในโค้ดตัวอย่าง ฟังก์ชัน embed จะกำหนดไว้ในไฟล์ ImageEmbedderHelper.kt

จัดการและแสดงผลลัพธ์

เมื่อทำการอนุมาน งานที่ฝังรูปภาพจะแสดงผลImageEmbedderResultออบเจ็กต์ที่มีรายการการฝัง (ทศนิยมหรือจํานวนจริง) สําหรับรูปภาพที่ป้อน

ต่อไปนี้เป็นตัวอย่างข้อมูลเอาต์พุตจากงานนี้

ImageEmbedderResult:
  Embedding #0 (sole embedding head):
    float_embedding: {0.0, 0.0, ..., 0.0, 1.0, 0.0, 0.0, 2.0}
    head_index: 0

ผลลัพธ์นี้ได้มาจากการฝังรูปภาพต่อไปนี้

ภาพแมวสายพันธุ์แปลกตาระยะกลาง

คุณสามารถเปรียบเทียบความคล้ายคลึงของข้อมูลเชิงลึก 2 รายการได้โดยใช้ฟังก์ชัน ImageEmbedder.cosineSimilarity ดูตัวอย่างได้ที่โค้ดต่อไปนี้

// Compute cosine similarity.
double similarity = ImageEmbedder.cosineSimilarity(
  result.embeddingResult().embeddings().get(0),
  otherResult.embeddingResult().embeddings().get(0));