คำแนะนำในการแยกประเภทรูปภาพสำหรับ Android

งานตัวแยกประเภทรูปภาพ MediaPipe ช่วยให้คุณจัดประเภทรูปภาพได้ คุณสามารถใช้งานนี้เพื่อระบุสิ่งที่รูปภาพแสดงจากชุดหมวดหมู่ที่กําหนดไว้เมื่อฝึก วิธีการเหล่านี้แสดงวิธีใช้โปรแกรมจัดประเภทรูปภาพกับแอป Android ตัวอย่างโค้ดที่อธิบายในวิธีการเหล่านี้มีอยู่ใน GitHub

คุณสามารถดูการทํางานของงานนี้ได้โดยดูเดโมบนเว็บ ดูข้อมูลเพิ่มเติมเกี่ยวกับความสามารถ รูปแบบ และตัวเลือกการกําหนดค่าของงานนี้ได้ที่ภาพรวม

ตัวอย่างโค้ด

โค้ดตัวอย่างของ MediaPipe Tasks คือการใช้งานแอปการจัดประเภทรูปภาพสำหรับ Android อย่างง่าย ตัวอย่างนี้ใช้กล้องในอุปกรณ์ Android จริงเพื่อจัดประเภทวัตถุอย่างต่อเนื่อง และยังใช้รูปภาพและวิดีโอจากแกลเลอรีของอุปกรณ์เพื่อจัดประเภทวัตถุแบบคงที่ได้ด้วย

คุณสามารถใช้แอปนี้เป็นจุดเริ่มต้นสําหรับแอป Android ของคุณเอง หรือใช้อ้างอิงเมื่อแก้ไขแอปที่มีอยู่ โค้ดตัวอย่างตัวจัดประเภทรูปภาพโฮสต์อยู่ใน GitHub

ดาวน์โหลดรหัส

วิธีการต่อไปนี้แสดงวิธีสร้างสำเนาโค้ดตัวอย่างในเครื่องโดยใช้เครื่องมือบรรทัดคำสั่ง git

วิธีดาวน์โหลดโค้ดตัวอย่าง

  1. โคลนที่เก็บ Git โดยใช้คําสั่งต่อไปนี้
    git clone https://github.com/google-ai-edge/mediapipe-samples
    
  2. (ไม่บังคับ) กำหนดค่าอินสแตนซ์ git ให้ใช้การตรวจสอบแบบเบาเพื่อมีเฉพาะไฟล์สำหรับแอปตัวอย่างโปรแกรมแยกประเภทรูปภาพเท่านั้น
    cd mediapipe
    git sparse-checkout init --cone
    git sparse-checkout set examples/image_classification/android
    

หลังจากสร้างโค้ดตัวอย่างเวอร์ชันในเครื่องแล้ว คุณสามารถนําเข้าโปรเจ็กต์ไปยัง Android Studio และเรียกใช้แอปได้ ดูวิธีการได้ที่คู่มือการตั้งค่าสําหรับ Android

คอมโพเนนต์หลัก

ไฟล์ต่อไปนี้มีโค้ดสําคัญสําหรับแอปพลิเคชันตัวอย่างการจัดประเภทรูปภาพนี้

  • ImageClassifierHelper.kt - เริ่มต้นตัวแยกประเภทรูปภาพ รวมถึงจัดการโมเดลและการเลือกตัวแทน
  • MainActivity.kt - ใช้แอปพลิเคชัน ซึ่งรวมถึงการเรียกใช้ ImageClassificationHelper และ ClassificationResultsAdapter
  • ClassificationResultsAdapter.kt - จัดการและจัดรูปแบบผลลัพธ์

ตั้งค่า

ส่วนนี้จะอธิบายขั้นตอนสําคัญในการตั้งค่าสภาพแวดล้อมการพัฒนาและโปรเจ็กต์โค้ดเพื่อใช้โปรแกรมจัดประเภทรูปภาพ ดูข้อมูลทั่วไปเกี่ยวกับการตั้งค่าสภาพแวดล้อมการพัฒนาเพื่อใช้งาน MediaPipe รวมถึงข้อกำหนดเวอร์ชันแพลตฟอร์มได้ที่คู่มือการตั้งค่าสำหรับ Android

การอ้างอิง

ตัวจัดประเภทรูปภาพใช้ไลบรารี com.google.mediapipe:tasks-vision เพิ่มข้อกำหนดนี้ลงในไฟล์ build.gradle ของโปรเจ็กต์การพัฒนาแอป Android นําเข้าข้อกําหนดเบื้องต้นที่จําเป็นด้วยโค้ดต่อไปนี้

dependencies {
    ...
    implementation 'com.google.mediapipe:tasks-vision:latest.release'
}

รุ่น

งานตัวจัดประเภทรูปภาพของ MediaPipe ต้องใช้โมเดลที่ผ่านการฝึกซึ่งเข้ากันได้กับงานนี้ ดูข้อมูลเพิ่มเติมเกี่ยวกับโมเดลที่ผ่านการฝึกแล้วสำหรับโปรแกรมจัดประเภทรูปภาพได้ที่ส่วนโมเดลในภาพรวมของงาน

เลือกและดาวน์โหลดโมเดล จากนั้นจัดเก็บไว้ในไดเรกทอรีโปรเจ็กต์

<dev-project-root>/src/main/assets

ใช้เมธอด BaseOptions.Builder.setModelAssetPath() เพื่อระบุเส้นทางที่โมเดลใช้ วิธีการนี้จะกล่าวถึงในตัวอย่างโค้ดในส่วนถัดไป

ในโค้ดตัวอย่างของโปรแกรมแยกประเภทรูปภาพ ระบบจะกำหนดโมเดลไว้ในไฟล์ ImageClassifierHelper.kt

สร้างงาน

คุณสามารถใช้ฟังก์ชัน createFromOptions เพื่อสร้างงาน ฟังก์ชัน createFromOptions ยอมรับตัวเลือกการกําหนดค่า ซึ่งรวมถึงโหมดการทํางาน ภาษาของชื่อที่แสดง จํานวนผลการค้นหาสูงสุด เกณฑ์ความเชื่อมั่น และรายการที่อนุญาตหรือปฏิเสธหมวดหมู่ ดูข้อมูลเพิ่มเติมเกี่ยวกับตัวเลือกการกำหนดค่าได้ที่ภาพรวมการกําหนดค่า

งานตัวจัดประเภทรูปภาพรองรับข้อมูลอินพุต 3 ประเภท ได้แก่ ภาพนิ่ง ไฟล์วิดีโอ และสตรีมวิดีโอสด คุณต้องระบุโหมดการทํางานที่สอดคล้องกับประเภทข้อมูลอินพุตเมื่อสร้างงาน เลือกแท็บที่สอดคล้องกับประเภทข้อมูลอินพุตเพื่อดูวิธีสร้างงานและเรียกใช้การอนุมาน

รูปภาพ

ImageClassifierOptions options =
  ImageClassifierOptions.builder()
    .setBaseOptions(
      BaseOptions.builder().setModelAssetPath("model.tflite").build())
    .setRunningMode(RunningMode.IMAGE)
    .setMaxResults(5)
    .build();
imageClassifier = ImageClassifier.createFromOptions(context, options);
    

วิดีโอ

ImageClassifierOptions options =
  ImageClassifierOptions.builder()
    .setBaseOptions(
      BaseOptions.builder().setModelAssetPath("model.tflite").build())
    .setRunningMode(RunningMode.VIDEO)
    .setMaxResults(5)
    .build();
imageClassifier = ImageClassifier.createFromOptions(context, options);
    

ไลฟ์สด

ImageClassifierOptions options =
  ImageClassifierOptions.builder()
    .setBaseOptions(
      BaseOptions.builder().setModelAssetPath("model.tflite").build())
    .setRunningMode(RunningMode.LIVE_STREAM)
    .setMaxResults(5)
    .setResultListener((result, inputImage) -> {
         // Process the classification result here.
    })
    .setErrorListener((result, inputImage) -> {
         // Process the classification errors here.
    })
    .build()
imageClassifier = ImageClassifier.createFromOptions(context, options)
    

การใช้งานโค้ดตัวอย่างตัวจัดประเภทรูปภาพช่วยให้ผู้ใช้สลับระหว่างโหมดการประมวลผลได้ แนวทางนี้ทําให้โค้ดการสร้างงานซับซ้อนขึ้นและอาจไม่เหมาะกับกรณีการใช้งานของคุณ คุณจะเห็นโค้ดนี้ในฟังก์ชัน setupImageClassifier() ของไฟล์ ImageClassifierHelper.kt

ตัวเลือกการกำหนดค่า

งานนี้มีตัวเลือกการกำหนดค่าต่อไปนี้สำหรับแอป Android

ชื่อตัวเลือก คำอธิบาย ช่วงของค่า ค่าเริ่มต้น
runningMode ตั้งค่าโหมดการทํางานสําหรับงาน โดยโหมดมี 3 แบบ ดังนี้

รูปภาพ: โหมดสำหรับอินพุตรูปภาพเดียว

วิดีโอ: โหมดสำหรับเฟรมที่ถอดรหัสของวิดีโอ

LIVE_STREAM: โหมดสตรีมแบบสดของข้อมูลอินพุต เช่น จากกล้อง ในโหมดนี้ คุณต้องเรียกใช้ resultListener เพื่อตั้งค่า Listener เพื่อรับผลลัพธ์แบบไม่พร้อมกัน
{IMAGE, VIDEO, LIVE_STREAM} IMAGE
displayNamesLocale ตั้งค่าภาษาของป้ายกำกับที่จะใช้สำหรับชื่อที่แสดงซึ่งระบุไว้ในข้อมูลเมตาของโมเดลของงาน (หากมี) ค่าเริ่มต้นคือ en สำหรับภาษาอังกฤษ คุณเพิ่มป้ายกำกับที่แปลแล้วลงในข้อมูลเมตาของโมเดลที่กำหนดเองได้โดยใช้ TensorFlow Lite Metadata Writer API รหัสภาษา en
maxResults กําหนดจํานวนสูงสุดของผลการแยกประเภทที่มีคะแนนสูงสุดที่จะแสดง (ไม่บังคับ) หากมีค่าน้อยกว่า 0 ระบบจะแสดงผลลัพธ์ทั้งหมดที่มีอยู่ ตัวเลขบวกใดก็ได้ -1
scoreThreshold ตั้งค่าเกณฑ์คะแนนการคาดการณ์ที่จะลบล้างเกณฑ์ที่ระบุไว้ในข้อมูลเมตาของโมเดล (หากมี) ระบบจะปฏิเสธผลลัพธ์ที่ต่ำกว่าค่านี้ ตัวเลขทศนิยม ไม่ได้ตั้งค่า
categoryAllowlist ตั้งค่ารายการชื่อหมวดหมู่ที่อนุญาต (ไม่บังคับ) หากไม่ว่าง ระบบจะกรองผลการจัดประเภทที่มีชื่อหมวดหมู่ไม่อยู่ในชุดนี้ออก ระบบจะไม่สนใจชื่อหมวดหมู่ที่ซ้ำกันหรือไม่รู้จัก ตัวเลือกนี้ใช้ร่วมกันกับ categoryDenylist ไม่ได้ และการใช้ทั้ง 2 ตัวเลือกจะทำให้เกิดข้อผิดพลาด สตริงใดก็ได้ ไม่ได้ตั้งค่า
categoryDenylist ตั้งค่ารายการชื่อหมวดหมู่ที่ไม่อนุญาต (ไม่บังคับ) หากไม่เป็นค่าว่าง ระบบจะกรองผลการจัดประเภทที่มีชื่อหมวดหมู่อยู่ในชุดนี้ออก ระบบจะไม่สนใจชื่อหมวดหมู่ที่ซ้ำกันหรือไม่รู้จัก ตัวเลือกนี้ใช้ร่วมกันกับ categoryAllowlist ไม่ได้ และการใช้ทั้ง 2 ตัวเลือกจะทำให้เกิดข้อผิดพลาด สตริงใดก็ได้ ไม่ได้ตั้งค่า
resultListener ตั้งค่าโปรแกรมรับฟังผลลัพธ์ให้รับผลการแยกประเภทแบบไม่พร้อมกันเมื่อตัวแยกประเภทรูปภาพอยู่ในโหมดสตรีมแบบสด ใช้ได้เมื่อตั้งค่าโหมดการทํางานเป็น LIVE_STREAM เท่านั้น ไม่มี ไม่ได้ตั้งค่า
errorListener ตั้งค่าโปรแกรมรับฟังข้อผิดพลาด (ไม่บังคับ) ไม่มี ไม่ได้ตั้งค่า

เตรียมข้อมูล

ตัวจัดประเภทรูปภาพใช้งานได้กับรูปภาพ ไฟล์วิดีโอ และวิดีโอสตรีมแบบสด งานจะจัดการการประมวลผลข้อมูลอินพุตก่อนการประมวลผล ซึ่งรวมถึงการปรับขนาด การหมุน และการปรับค่าให้เป็นไปตามมาตรฐาน

คุณต้องแปลงรูปภาพหรือเฟรมอินพุตเป็นออบเจ็กต์ com.google.mediapipe.framework.image.MPImage ก่อนส่งไปยังโปรแกรมจัดประเภทรูปภาพ

รูปภาพ

import com.google.mediapipe.framework.image.BitmapImageBuilder;
import com.google.mediapipe.framework.image.MPImage;

// Load an image on the users device as a Bitmap object using BitmapFactory.

// Convert an Androids Bitmap object to a MediaPipes Image object.
Image mpImage = new BitmapImageBuilder(bitmap).build();
    

วิดีโอ

import com.google.mediapipe.framework.image.BitmapImageBuilder;
import com.google.mediapipe.framework.image.MPImage;

// Load a video file on the user's device using MediaMetadataRetriever

// From the videos metadata, load the METADATA_KEY_DURATION and
// METADATA_KEY_VIDEO_FRAME_COUNT value. Youll need them
// to calculate the timestamp of each frame later.

// Loop through the video and load each frame as a Bitmap object.

// Convert the Androids Bitmap object to a MediaPipes Image object.
Image mpImage = new BitmapImageBuilder(frame).build();
    

ไลฟ์สด

import com.google.mediapipe.framework.image.MediaImageBuilder;
import com.google.mediapipe.framework.image.MPImage;

// Create a CameraXs ImageAnalysis to continuously receive frames 
// from the devices camera. Configure it to output frames in RGBA_8888
// format to match with what is required by the model.

// For each Androids ImageProxy object received from the ImageAnalysis, 
// extract the encapsulated Androids Image object and convert it to 
// a MediaPipes Image object.
android.media.Image mediaImage = imageProxy.getImage()
Image mpImage = new MediaImageBuilder(mediaImage).build();
    

ในโค้ดตัวอย่างตัวจัดประเภทรูปภาพ การเตรียมข้อมูลจะดำเนินการในไฟล์ ImageClassifierHelper.kt

เรียกใช้งาน

คุณสามารถเรียกใช้ฟังก์ชัน classify ที่สอดคล้องกับโหมดการทํางานเพื่อทริกเกอร์การอนุมาน Image Classifier API จะแสดงหมวดหมู่ที่เป็นไปได้สำหรับวัตถุภายในรูปภาพหรือเฟรมที่ป้อน

รูปภาพ

ImageClassifierResult classifierResult = imageClassifier.classify(image);
    

วิดีโอ

// Calculate the timestamp in milliseconds of the current frame.
long frame_timestamp_ms = 1000 * video_duration * frame_index / frame_count;

// Run inference on the frame.
ImageClassifierResult classifierResult =
    imageClassifier.classifyForVideo(image, frameTimestampMs);
    

ไลฟ์สด

// Run inference on the frame. The classifications results will be available 
// via the `resultListener` provided in the `ImageClassifierOptions` when 
// the image classifier was created.
imageClassifier.classifyAsync(image, frameTimestampMs);
    

โปรดทราบดังต่อไปนี้

  • เมื่อทำงานในโหมดวิดีโอหรือโหมดสตรีมแบบสด คุณต้องระบุการประทับเวลาของเฟรมอินพุตให้กับงานโปรแกรมจัดประเภทรูปภาพด้วย
  • เมื่อทำงานในโหมดรูปภาพหรือวิดีโอ งานตัวจัดประเภทรูปภาพจะบล็อกเธรดปัจจุบันจนกว่าจะประมวลผลรูปภาพหรือเฟรมอินพุตเสร็จ ดำเนินการประมวลผลในเธรดแบ็กกราวด์เพื่อหลีกเลี่ยงการบล็อกอินเทอร์เฟซผู้ใช้
  • เมื่อทำงานในโหมดสตรีมแบบสด งานตัวจัดประเภทรูปภาพจะไม่บล็อกเธรดปัจจุบัน แต่จะแสดงผลทันที โดยจะเรียกใช้โปรแกรมรับฟังผลลัพธ์พร้อมผลการตรวจจับทุกครั้งที่ประมวลผลเฟรมอินพุตเสร็จแล้ว หากมีการเรียกใช้ฟังก์ชัน classifyAsync เมื่องานตัวจัดประเภทรูปภาพกำลังประมวลผลเฟรมอื่นอยู่ งานจะไม่สนใจเฟรมอินพุตใหม่

ในโค้ดตัวอย่างตัวจัดประเภทรูปภาพ ฟังก์ชัน classify จะกำหนดไว้ในไฟล์ ImageClassifierHelper.kt

จัดการและแสดงผลลัพธ์

เมื่อทำการอนุมาน งานจัดประเภทรูปภาพจะแสดงผลออบเจ็กต์ ImageClassifierResult ซึ่งมีรายการหมวดหมู่ที่เป็นไปได้สำหรับวัตถุภายในรูปภาพหรือเฟรมที่ป้อน

ต่อไปนี้เป็นตัวอย่างข้อมูลเอาต์พุตจากงานนี้

ImageClassifierResult:
 Classifications #0 (single classification head):
  head index: 0
  category #0:
   category name: "/m/01bwb9"
   display name: "Passer domesticus"
   score: 0.91406
   index: 671
  category #1:
   category name: "/m/01bwbt"
   display name: "Passer montanus"
   score: 0.00391
   index: 670

ผลลัพธ์นี้ได้มาจากการเรียกใช้ตัวจัดประเภทนกใน

ภาพระยะใกล้ของนกกระจอกบ้าน

ในโค้ดตัวอย่างตัวจัดประเภทรูปภาพ คลาส ClassificationResultsAdapter ในไฟล์ ClassificationResultsAdapter.kt จะจัดการผลลัพธ์ ดังนี้

fun updateResults(imageClassifierResult: ImageClassifierResult? = null) {
    categories = MutableList(adapterSize) { null }
    if (imageClassifierResult != null) {
        val sortedCategories = imageClassifierResult.classificationResult()
            .classifications()[0].categories().sortedBy { it.index() }
        val min = kotlin.math.min(sortedCategories.size, categories.size)
        for (i in 0 until min) {
            categories[i] = sortedCategories[i]
        }
    }
}