Android डिवाइसों के लिए, इमेज क्लासिफ़िकेशन गाइड

MediaPipe इमेज क्लासिफ़ायर टास्क की मदद से, इमेज की कैटगरी तय की जा सकती है. इस टास्क का इस्तेमाल करके, यह पता लगाया जा सकता है कि ट्रेनिंग के समय तय की गई कैटगरी में से, कोई इमेज किस कैटगरी से जुड़ी है. इन निर्देशों में, Android ऐप्लिकेशन के साथ इमेज की कैटगरी तय करने की सुविधा का इस्तेमाल करने का तरीका बताया गया है. इन निर्देशों में बताया गया कोड सैंपल, GitHub पर उपलब्ध है.

वेब डेमो देखकर, इस टास्क को काम करते हुए देखा जा सकता है. इस टास्क की सुविधाओं, मॉडल, और कॉन्फ़िगरेशन के विकल्पों के बारे में ज़्यादा जानने के लिए, खास जानकारी देखें.

कोड का उदाहरण

MediaPipe Tasks के उदाहरण के तौर पर दिया गया कोड, Android के लिए इमेज क्लासिफ़ायर ऐप्लिकेशन को आसानी से लागू करने का तरीका है. इस उदाहरण में, ऑब्जेक्ट की कैटगरी लगातार तय करने के लिए, किसी Android डिवाइस के कैमरे का इस्तेमाल किया गया है. साथ ही, ऑब्जेक्ट की कैटगरी को स्टैटिक तौर पर तय करने के लिए, डिवाइस की गैलरी में मौजूद इमेज और वीडियो का भी इस्तेमाल किया जा सकता है.

इस ऐप्लिकेशन का इस्तेमाल, अपने Android ऐप्लिकेशन के लिए शुरुआती बिंदु के तौर पर किया जा सकता है. इसके अलावा, किसी मौजूदा ऐप्लिकेशन में बदलाव करते समय, इसका इस्तेमाल किया जा सकता है. इमेज क्लासिफ़ायर के उदाहरण का कोड, GitHub पर होस्ट किया गया है.

कोड डाउनलोड करना

यहां दिए गए निर्देशों में, git कमांड-लाइन टूल का इस्तेमाल करके, उदाहरण के कोड की लोकल कॉपी बनाने का तरीका बताया गया है.

उदाहरण के तौर पर दिया गया कोड डाउनलोड करने के लिए:

  1. यहां दिए गए कमांड का इस्तेमाल करके, Git डेटा स्टोर करने की जगह को क्लोन करें:
    git clone https://github.com/google-ai-edge/mediapipe-samples
    
  2. इसके अलावा, अपने git इंस्टेंस को स्पैर्स चेकआउट का इस्तेमाल करने के लिए कॉन्फ़िगर करें, ताकि आपके पास सिर्फ़ इमेज क्लासिफ़ायर के उदाहरण वाले ऐप्लिकेशन की फ़ाइलें हों:
    cd mediapipe
    git sparse-checkout init --cone
    git sparse-checkout set examples/image_classification/android
    

उदाहरण के तौर पर दिए गए कोड का लोकल वर्शन बनाने के बाद, प्रोजेक्ट को Android Studio में इंपोर्ट करके ऐप्लिकेशन चलाया जा सकता है. निर्देशों के लिए, Android के लिए सेटअप गाइड देखें.

मुख्य कॉम्पोनेंट

नीचे दी गई फ़ाइलों में, इमेज के कैटगरी में बांटने के उदाहरण वाले इस ऐप्लिकेशन के लिए ज़रूरी कोड मौजूद है:

  • ImageClassifierHelper.kt - इमेज क्लासिफ़ायर को शुरू करता है और मॉडल और प्रतिनिधि चुनने की प्रोसेस को मैनेज करता है.
  • MainActivity.kt - ऐप्लिकेशन को लागू करता है. इसमें ImageClassificationHelper और ClassificationResultsAdapter को कॉल करना भी शामिल है.
  • ClassificationResultsAdapter.kt - नतीजों को मैनेज और फ़ॉर्मैट करता है.

सेटअप

इस सेक्शन में, इमेज क्लासिफ़ायर का इस्तेमाल करने के लिए, डेवलपमेंट एनवायरमेंट और कोड प्रोजेक्ट सेट अप करने के मुख्य चरणों के बारे में बताया गया है. MediaPipe Tasks का इस्तेमाल करने के लिए, डेवलपमेंट एनवायरमेंट सेट अप करने के बारे में सामान्य जानकारी पाने के लिए, Android के लिए सेटअप गाइड देखें. इसमें प्लैटफ़ॉर्म के वर्शन से जुड़ी ज़रूरी शर्तें भी शामिल हैं.

डिपेंडेंसी

इमेज क्लासिफ़ायर, com.google.mediapipe:tasks-vision लाइब्रेरी का इस्तेमाल करता है. इस डिपेंडेंसी को अपने Android ऐप्लिकेशन डेवलपमेंट प्रोजेक्ट की build.gradle फ़ाइल में जोड़ें. ज़रूरी डिपेंडेंसी को इस कोड की मदद से इंपोर्ट करें:

dependencies {
    ...
    implementation 'com.google.mediapipe:tasks-vision:latest.release'
}

मॉडल

MediaPipe Image Classifier टास्क के लिए, ट्रेन किया गया ऐसा मॉडल ज़रूरी है जो इस टास्क के साथ काम करता हो. इमेज क्लासिफ़ायर के लिए, ट्रेन किए गए उपलब्ध मॉडल के बारे में ज़्यादा जानने के लिए, टास्क की खास जानकारी वाला मॉडल सेक्शन देखें.

मॉडल चुनें और डाउनलोड करें. इसके बाद, उसे अपनी प्रोजेक्ट डायरेक्ट्री में सेव करें:

<dev-project-root>/src/main/assets

मॉडल के इस्तेमाल किए गए पाथ के बारे में बताने के लिए, BaseOptions.Builder.setModelAssetPath() वाले तरीके का इस्तेमाल करें. इस तरीके के बारे में अगले सेक्शन में दिए गए कोड के उदाहरण में बताया गया है.

इमेज क्लासिफ़ायर के उदाहरण के कोड में, मॉडल की जानकारी ImageClassifierHelper.kt फ़ाइल में दी गई है.

टास्क बनाना

टास्क बनाने के लिए, createFromOptions फ़ंक्शन का इस्तेमाल किया जा सकता है. createFromOptions फ़ंक्शन, कॉन्फ़िगरेशन के विकल्पों को स्वीकार करता है. इनमें, चलने का मोड, नामों की स्थानीय भाषा, नतीजों की ज़्यादा से ज़्यादा संख्या, कॉन्फ़िडेंस थ्रेशोल्ड, और कैटगरी की अनुमति वाली सूची या अनुमति न देने वाली सूची शामिल है. कॉन्फ़िगरेशन के विकल्पों के बारे में ज़्यादा जानने के लिए, कॉन्फ़िगरेशन की खास जानकारी देखें.

इमेज क्लासिफ़ायर टास्क में तीन तरह के इनपुट डेटा का इस्तेमाल किया जा सकता है: स्टिल इमेज, वीडियो फ़ाइलें, और लाइव वीडियो स्ट्रीम. टास्क बनाते समय, आपको अपने इनपुट डेटा टाइप के हिसाब से, रनिंग मोड तय करना होगा. टास्क बनाने और अनुमान लगाने का तरीका जानने के लिए, अपने इनपुट डेटा टाइप से जुड़ा टैब चुनें.

इमेज

ImageClassifierOptions options =
  ImageClassifierOptions.builder()
    .setBaseOptions(
      BaseOptions.builder().setModelAssetPath("model.tflite").build())
    .setRunningMode(RunningMode.IMAGE)
    .setMaxResults(5)
    .build();
imageClassifier = ImageClassifier.createFromOptions(context, options);
    

वीडियो

ImageClassifierOptions options =
  ImageClassifierOptions.builder()
    .setBaseOptions(
      BaseOptions.builder().setModelAssetPath("model.tflite").build())
    .setRunningMode(RunningMode.VIDEO)
    .setMaxResults(5)
    .build();
imageClassifier = ImageClassifier.createFromOptions(context, options);
    

लाइव स्ट्रीम

ImageClassifierOptions options =
  ImageClassifierOptions.builder()
    .setBaseOptions(
      BaseOptions.builder().setModelAssetPath("model.tflite").build())
    .setRunningMode(RunningMode.LIVE_STREAM)
    .setMaxResults(5)
    .setResultListener((result, inputImage) -> {
         // Process the classification result here.
    })
    .setErrorListener((result, inputImage) -> {
         // Process the classification errors here.
    })
    .build()
imageClassifier = ImageClassifier.createFromOptions(context, options)
    

इमेज क्लासिफ़ायर के उदाहरण के तौर पर दिए गए कोड को लागू करने पर, उपयोगकर्ता को प्रोसेसिंग मोड के बीच स्विच करने की सुविधा मिलती है. इस तरीके से, टास्क बनाने का कोड ज़्यादा जटिल हो जाता है और हो सकता है कि यह आपके इस्तेमाल के उदाहरण के लिए सही न हो. इस कोड को ImageClassifierHelper.kt फ़ाइल के setupImageClassifier() फ़ंक्शन में देखा जा सकता है.

कॉन्फ़िगरेशन विकल्प

इस टास्क में, Android ऐप्लिकेशन के लिए कॉन्फ़िगरेशन के ये विकल्प हैं:

विकल्प का नाम ब्यौरा वैल्यू की सीमा डिफ़ॉल्ट मान
runningMode टास्क के लिए रनिंग मोड सेट करता है. इसके तीन मोड हैं:

IMAGE: एक इमेज इनपुट के लिए मोड.

वीडियो: किसी वीडियो के डिकोड किए गए फ़्रेम के लिए मोड.

LIVE_STREAM: कैमरे से मिले इनपुट डेटा की लाइव स्ट्रीम के लिए मोड. इस मोड में, नतीजे असींक्रोनस तरीके से पाने के लिए, एक listener सेट अप करने के लिए, resultListener को कॉल करना होगा.
{IMAGE, VIDEO, LIVE_STREAM} IMAGE
displayNamesLocale टास्क के मॉडल के मेटाडेटा में दिए गए डिसप्ले नेम के लिए, लेबल की भाषा सेट करता है. हालांकि, ऐसा तब ही किया जाता है, जब वह भाषा उपलब्ध हो. अंग्रेज़ी के लिए, डिफ़ॉल्ट तौर पर en होता है. TensorFlow Lite मेटाडेटा राइटर एपीआई का इस्तेमाल करके, कस्टम मॉडल के मेटाडेटा में स्थानीय भाषा के लेबल जोड़े जा सकते हैं स्थानीय भाषा का कोड en
maxResults सबसे ज़्यादा स्कोर वाले, कैटगरी के नतीजों की ज़्यादा से ज़्यादा संख्या सेट करता है. हालांकि, ऐसा करना ज़रूरी नहीं है. अगर यह वैल्यू 0 से कम है, तो सभी उपलब्ध नतीजे दिखाए जाएंगे. कोई भी पॉज़िटिव संख्या -1
scoreThreshold अनुमान के स्कोर का थ्रेशोल्ड सेट करता है. यह थ्रेशोल्ड, मॉडल के मेटाडेटा में दिए गए थ्रेशोल्ड (अगर कोई है) को बदल देता है. इस वैल्यू से कम के नतीजे अस्वीकार कर दिए जाते हैं. कोई भी फ़्लोट सेट नहीं है
categoryAllowlist कैटगरी के लिए इस्तेमाल किए जा सकने वाले नामों की वैकल्पिक सूची सेट करता है. अगर यह सेट नहीं है, तो कैटगरी के जिन नामों को इस सेट में शामिल नहीं किया गया है उनके लिए कैटगरी तय करने के नतीजों को फ़िल्टर कर दिया जाएगा. डुप्लीकेट या अज्ञात कैटगरी के नामों को अनदेखा कर दिया जाता है. यह विकल्प, categoryDenylist के साथ इस्तेमाल नहीं किया जा सकता. दोनों का इस्तेमाल करने पर गड़बड़ी का मैसेज दिखता है. कोई भी स्ट्रिंग सेट नहीं है
categoryDenylist कैटगरी के उन नामों की वैकल्पिक सूची सेट करता है जिनका इस्तेमाल नहीं किया जा सकता. अगर यह सेट खाली नहीं है, तो कैटगरी के जिन नामों को इस सेट में शामिल किया गया है उनके लिए, कैटगरी के हिसाब से किए गए बंटवारे के नतीजे फ़िल्टर कर दिए जाएंगे. डुप्लीकेट या अज्ञात कैटगरी के नामों को अनदेखा कर दिया जाता है. यह विकल्प, categoryAllowlist के साथ एक साथ इस्तेमाल नहीं किया जा सकता. दोनों का इस्तेमाल करने पर गड़बड़ी होती है. कोई भी स्ट्रिंग सेट नहीं है
resultListener जब इमेज क्लासिफ़ायर लाइव स्ट्रीम मोड में हो, तब कैटगरी के नतीजे असींक्रोनस तरीके से पाने के लिए, नतीजा सुनने वाला सेट करता है. इसका इस्तेमाल सिर्फ़ तब किया जा सकता है, जब रनिंग मोड को LIVE_STREAM पर सेट किया गया हो लागू नहीं सेट नहीं है
errorListener गड़बड़ी सुनने वाले को सेट करता है. हालांकि, ऐसा करना ज़रूरी नहीं है. लागू नहीं सेट नहीं है

डेटा तैयार करना

इमेज क्लासिफ़ायर, इमेज, वीडियो फ़ाइल, और लाइव स्ट्रीम वीडियो के साथ काम करता है. यह टास्क, डेटा इनपुट को प्रोसेस करने से पहले की प्रोसेस को मैनेज करता है. इसमें, साइज़ बदलना, घुमाना, और वैल्यू को सामान्य करना शामिल है.

इनपुट इमेज या फ़्रेम को इमेज क्लासिफ़ायर में भेजने से पहले, उसे com.google.mediapipe.framework.image.MPImage ऑब्जेक्ट में बदलना होगा.

इमेज

import com.google.mediapipe.framework.image.BitmapImageBuilder;
import com.google.mediapipe.framework.image.MPImage;

// Load an image on the users device as a Bitmap object using BitmapFactory.

// Convert an Androids Bitmap object to a MediaPipes Image object.
Image mpImage = new BitmapImageBuilder(bitmap).build();
    

वीडियो

import com.google.mediapipe.framework.image.BitmapImageBuilder;
import com.google.mediapipe.framework.image.MPImage;

// Load a video file on the user's device using MediaMetadataRetriever

// From the videos metadata, load the METADATA_KEY_DURATION and
// METADATA_KEY_VIDEO_FRAME_COUNT value. Youll need them
// to calculate the timestamp of each frame later.

// Loop through the video and load each frame as a Bitmap object.

// Convert the Androids Bitmap object to a MediaPipes Image object.
Image mpImage = new BitmapImageBuilder(frame).build();
    

लाइव स्ट्रीम

import com.google.mediapipe.framework.image.MediaImageBuilder;
import com.google.mediapipe.framework.image.MPImage;

// Create a CameraXs ImageAnalysis to continuously receive frames 
// from the devices camera. Configure it to output frames in RGBA_8888
// format to match with what is required by the model.

// For each Androids ImageProxy object received from the ImageAnalysis, 
// extract the encapsulated Androids Image object and convert it to 
// a MediaPipes Image object.
android.media.Image mediaImage = imageProxy.getImage()
Image mpImage = new MediaImageBuilder(mediaImage).build();
    

इमेज क्लासिफ़ायर के उदाहरण के कोड में, डेटा तैयार करने की प्रोसेस को ImageClassifierHelper.kt फ़ाइल में मैनेज किया जाता है.

टास्क चलाना

अनुमान ट्रिगर करने के लिए, अपने रनिंग मोड के हिसाब से classify फ़ंक्शन को कॉल किया जा सकता है. Image Classifier API, इनपुट इमेज या फ़्रेम में मौजूद ऑब्जेक्ट की संभावित कैटगरी दिखाता है.

इमेज

ImageClassifierResult classifierResult = imageClassifier.classify(image);
    

वीडियो

// Calculate the timestamp in milliseconds of the current frame.
long frame_timestamp_ms = 1000 * video_duration * frame_index / frame_count;

// Run inference on the frame.
ImageClassifierResult classifierResult =
    imageClassifier.classifyForVideo(image, frameTimestampMs);
    

लाइव स्ट्रीम

// Run inference on the frame. The classifications results will be available 
// via the `resultListener` provided in the `ImageClassifierOptions` when 
// the image classifier was created.
imageClassifier.classifyAsync(image, frameTimestampMs);
    

निम्न पर ध्यान दें:

  • वीडियो मोड या लाइव स्ट्रीम मोड में चलाते समय, आपको इमेज क्लासिफ़ायर टास्क के लिए, इनपुट फ़्रेम का टाइमस्टैंप भी देना होगा.
  • इमेज या वीडियो मोड में चलने पर, इमेज क्लासिफ़ायर टास्क, मौजूदा थ्रेड को तब तक ब्लॉक करता है, जब तक वह इनपुट इमेज या फ़्रेम को प्रोसेस नहीं कर लेता. यूज़र इंटरफ़ेस को ब्लॉक होने से बचाने के लिए, प्रोसेसिंग को बैकग्राउंड थ्रेड में चलाएं.
  • लाइव स्ट्रीम मोड में चलने पर, इमेज क्लासिफ़ायर टास्क मौजूदा थ्रेड को ब्लॉक नहीं करता, बल्कि तुरंत वापस आ जाता है. यह हर बार इनपुट फ़्रेम को प्रोसेस करने के बाद, अपने नतीजे के लिसनर को पहचान के नतीजे के साथ कॉल करेगा. अगर इमेज क्लासिफ़ायर टास्क किसी दूसरे फ़्रेम को प्रोसेस कर रहा है, तो classifyAsync फ़ंक्शन को कॉल करने पर, टास्क नए इनपुट फ़्रेम को अनदेखा कर देता है.

इमेज क्लासिफ़ायर के उदाहरण वाले कोड में, classify फ़ंक्शन को ImageClassifierHelper.kt फ़ाइल में तय किया गया है.

नतीजों को मैनेज और दिखाना

अनुमान लगाने के बाद, इमेज क्लासिफ़ायर टास्क एक ImageClassifierResult ऑब्जेक्ट दिखाता है. इसमें इनपुट इमेज या फ़्रेम में मौजूद ऑब्जेक्ट की संभावित कैटगरी की सूची होती है.

यहां इस टास्क के आउटपुट डेटा का उदाहरण दिया गया है:

ImageClassifierResult:
 Classifications #0 (single classification head):
  head index: 0
  category #0:
   category name: "/m/01bwb9"
   display name: "Passer domesticus"
   score: 0.91406
   index: 671
  category #1:
   category name: "/m/01bwbt"
   display name: "Passer montanus"
   score: 0.00391
   index: 670

यह नतीजा, इन पर पक्षी की पहचान करने वाले टूल को चलाकर मिला है:

घर में रहने वाले स्पैरो की क्लोज़-अप फ़ोटो

इमेज क्लासिफ़ायर के उदाहरण वाले कोड में, ClassificationResultsAdapter.kt फ़ाइल में मौजूद ClassificationResultsAdapter क्लास, नतीजों को मैनेज करती है:

fun updateResults(imageClassifierResult: ImageClassifierResult? = null) {
    categories = MutableList(adapterSize) { null }
    if (imageClassifierResult != null) {
        val sortedCategories = imageClassifierResult.classificationResult()
            .classifications()[0].categories().sortedBy { it.index() }
        val min = kotlin.math.min(sortedCategories.size, categories.size)
        for (i in 0 until min) {
            categories[i] = sortedCategories[i]
        }
    }
}