웹용 손 랜드마크 감지 가이드

MediaPipe Hand Landmarker 태스크를 사용하면 이미지에서 손의 랜드마크를 감지할 수 있습니다. 이 안내에서는 웹 및 JavaScript 앱에서 손 랜드마커를 사용하는 방법을 보여줍니다.

이 태스크의 기능, 모델, 구성 옵션에 관한 자세한 내용은 개요를 참고하세요.

코드 예

Hand Landmarker의 예시 코드는 참고용으로 JavaScript에서 이 작업을 완전히 구현합니다. 이 코드는 이 작업을 테스트하고 자체 손 랜드마크 감지 앱을 빌드하는 데 도움이 됩니다. 웹브라우저만 사용하여 Hand Landmarker 예시 코드를 보고, 실행하고, 수정할 수 있습니다.

설정

이 섹션에서는 특히 Hand Landmarker를 사용하기 위해 개발 환경을 설정하는 주요 단계를 설명합니다. 플랫폼 버전 요구사항을 비롯한 웹 및 JavaScript 개발 환경 설정에 관한 일반적인 정보는 웹 설정 가이드를 참고하세요.

JavaScript 패키지

손 랜드마커 코드는 MediaPipe @mediapipe/tasks-vision NPM 패키지를 통해 사용할 수 있습니다. 플랫폼 설정 가이드의 안내에 따라 이러한 라이브러리를 찾아 다운로드할 수 있습니다.

다음 명령어를 사용하여 NPM을 통해 필요한 패키지를 설치할 수 있습니다.

npm install @mediapipe/tasks-vision

콘텐츠 전송 네트워크 (CDN) 서비스를 통해 작업 코드를 가져오려면 HTML 파일의 <head> 태그에 다음 코드를 추가합니다.

<!-- You can replace JSDeliver with another CDN if you prefer to -->
<head>
  <script src="https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision/vision_bundle.js"
    crossorigin="anonymous"></script>
</head>

모델

MediaPipe 손 랜드마커 태스크에는 이 태스크와 호환되는 학습된 모델이 필요합니다. 손 랜드마커에 사용할 수 있는 학습된 모델에 관한 자세한 내용은 작업 개요 모델 섹션을 참고하세요.

모델을 선택하고 다운로드한 다음 프로젝트 디렉터리에 저장합니다.

<dev-project-root>/app/shared/models/

할 일 만들기

Hand Landmarker createFrom...() 함수 중 하나를 사용하여 추론 실행을 위한 작업을 준비합니다. 학습된 모델 파일의 상대 또는 절대 경로와 함께 createFromModelPath() 함수를 사용합니다. 모델이 이미 메모리에 로드된 경우 createFromModelBuffer() 메서드를 사용할 수 있습니다.

아래의 코드 예는 createFromOptions() 함수를 사용하여 태스크를 설정하는 방법을 보여줍니다. createFromOptions 함수를 사용하면 구성 옵션으로 손 랜드마커를 맞춤설정할 수 있습니다. 구성 옵션에 관한 자세한 내용은 구성 옵션을 참고하세요.

다음 코드는 맞춤 옵션으로 작업을 빌드하고 구성하는 방법을 보여줍니다.

const vision = await FilesetResolver.forVisionTasks(
  // path/to/wasm/root
  "https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@latest/wasm"
);
const handLandmarker = await HandLandmarker.createFromOptions(
    vision,
    {
      baseOptions: {
        modelAssetPath: "hand_landmarker.task"
      },
      numHands: 2
    });

구성 옵션

이 태스크에는 웹 및 JavaScript 애플리케이션에 관한 다음과 같은 구성 옵션이 있습니다.

옵션 이름 설명 값 범위 기본값
runningMode 태스크의 실행 모드를 설정합니다. 모드는 두 가지가 있습니다.

IMAGE: 단일 이미지 입력의 모드입니다.

동영상: 동영상의 디코딩된 프레임 또는 카메라와 같은 입력 데이터의 라이브 스트림에 관한 모드입니다.
{IMAGE, VIDEO} IMAGE
numHands 손 지형지물 감지기에서 감지한 최대 손 수입니다. Any integer > 0 1
minHandDetectionConfidence 손바닥 감지 모델에서 손 감지가 성공으로 간주되기 위한 최소 신뢰도 점수입니다. 0.0 - 1.0 0.5
minHandPresenceConfidence 손 랜드마크 감지 모델에서 손 존재 점수의 최소 신뢰도 점수입니다. 동영상 모드와 라이브 스트림 모드에서 손 랜드마크 모델의 손 존재 신뢰도 점수가 이 기준점 미만이면 손 랜드마커가 손바닥 감지 모델을 트리거합니다. 그렇지 않으면 경량 손 추적 알고리즘이 후속 랜드마크 감지를 위해 손의 위치를 결정합니다. 0.0 - 1.0 0.5
minTrackingConfidence 손 추적이 성공으로 간주되는 최소 신뢰도 점수입니다. 현재 프레임과 마지막 프레임의 손 사이의 경계 상자 IoU 임곗값입니다. 손 랜드마커의 동영상 모드 및 스트림 모드에서 추적이 실패하면 손 랜드마커가 손 감지를 트리거합니다. 그렇지 않으면 손 감지를 건너뜁니다. 0.0 - 1.0 0.5

데이터 준비

Hand Landmarker는 호스트 브라우저에서 지원하는 모든 형식의 이미지에서 손 랜드마크를 감지할 수 있습니다. 이 작업은 크기 조절, 회전, 값 정규화 등 데이터 입력 전처리도 처리합니다. 동영상에서 손 랜드마크를 감지하려면 API를 사용하여 한 번에 하나의 프레임을 빠르게 처리하고 프레임의 타임스탬프를 사용하여 동영상 내에서 손 랜드마크가 발생하는 시점을 확인할 수 있습니다.

태스크 실행

손 랜드마커는 detect() (실행 모드 image) 및 detectForVideo() (실행 모드 video) 메서드를 사용하여 추론을 트리거합니다. 이 작업은 데이터를 처리하고 손 랜드마크를 감지하려고 시도한 후 결과를 보고합니다.

손 랜드마커 detect()detectForVideo() 메서드 호출은 동기식으로 실행되고 사용자 인터페이스 스레드를 차단합니다. 기기 카메라의 동영상 프레임에서 손 랜드마크를 감지하면 각 감지가 기본 스레드를 차단합니다. 웹 워커를 구현하여 다른 스레드에서 detect()detectForVideo() 메서드를 실행하면 이를 방지할 수 있습니다.

다음 코드는 태스크 모델로 처리를 실행하는 방법을 보여줍니다.

이미지

const image = document.getElementById("image") as HTMLImageElement;
const handLandmarkerResult = handLandmarker.detect(image);

동영상

await handLandmarker.setOptions({ runningMode: "video" });

let lastVideoTime = -1;
function renderLoop(): void {
  const video = document.getElementById("video");

  if (video.currentTime !== lastVideoTime) {
    const detections = handLandmarker.detectForVideo(video);
    processResults(detections);
    lastVideoTime = video.currentTime;
  }

  requestAnimationFrame(() => {
    renderLoop();
  });
}

손 랜드마커 작업 실행의 더 완전한 구현은 코드 예시를 참고하세요.

결과 처리 및 표시

손 랜드마커는 감지 실행마다 손 랜드마커 결과 객체를 생성합니다. 결과 객체에는 이미지 좌표의 손 랜드마크, 세계 좌표의 손 랜드마크, 감지된 손의 손잡이(왼손/오른손)가 포함됩니다.

다음은 이 태스크의 출력 데이터 예시입니다.

HandLandmarkerResult 출력에는 세 가지 구성요소가 포함됩니다. 각 구성요소는 배열이며 각 요소에는 감지된 단일 손에 대한 다음 결과가 포함됩니다.

  • 주로 사용하는 손

    손잡이는 감지된 손이 왼손인지 오른손인지 나타냅니다.

  • 명소

    손 랜드마크는 21개 있으며 각 랜드마크는 x, y, z 좌표로 구성됩니다. xy 좌표는 각각 이미지 너비와 높이에 따라 [0.0, 1.0] 으로 정규화됩니다. z 좌표는 랜드마크 깊이를 나타내며, 손목의 깊이가 원점입니다. 값이 작을수록 랜드마크가 카메라에 가까워집니다. z의 크기는 x와 거의 동일한 크기를 사용합니다.

  • 세계 명소

    21개의 손 랜드마크도 세계 좌표로 표시됩니다. 각 랜드마크는 x, y, z로 구성되며, 손의 기하학적 중심을 원점으로 하는 실제 3D 좌표를 미터 단위로 나타냅니다.

HandLandmarkerResult:
  Handedness:
    Categories #0:
      index        : 0
      score        : 0.98396
      categoryName : Left
  Landmarks:
    Landmark #0:
      x            : 0.638852
      y            : 0.671197
      z            : -3.41E-7
    Landmark #1:
      x            : 0.634599
      y            : 0.536441
      z            : -0.06984
    ... (21 landmarks for a hand)
  WorldLandmarks:
    Landmark #0:
      x            : 0.067485
      y            : 0.031084
      z            : 0.055223
    Landmark #1:
      x            : 0.063209
      y            : -0.00382
      z            : 0.020920
    ... (21 world landmarks for a hand)

다음 이미지는 태스크 출력의 시각화를 보여줍니다.

엄지를 치켜든 손의 골격 구조가 표시된 이미지

손 랜드마커 예시 코드는 태스크에서 반환된 결과를 표시하는 방법을 보여줍니다. 코드 예시를 참고하세요.