คู่มือการตรวจหาจุดสังเกตของมือสำหรับ Android

งานหาจุดสังเกตของมือของ MediaPipe ช่วยให้คุณตรวจหาจุดสังเกตของมือในรูปภาพได้ วิธีการเหล่านี้แสดงวิธีใช้เครื่องหมายจุดสังเกตบนมือกับแอป Android ตัวอย่างโค้ดที่อธิบายในวิธีการเหล่านี้มีอยู่ใน GitHub

ดูข้อมูลเพิ่มเติมเกี่ยวกับความสามารถ รูปแบบ และตัวเลือกการกําหนดค่าของงานนี้ได้ที่ภาพรวม

ตัวอย่างโค้ด

โค้ดตัวอย่างของ MediaPipe Tasks คือการใช้งานแอป Hand Landmarker ที่เรียบง่ายสำหรับ Android ตัวอย่างนี้ใช้กล้องในอุปกรณ์ Android จริงเพื่อตรวจหาจุดสังเกตของมืออย่างต่อเนื่อง และยังใช้รูปภาพและวิดีโอจากแกลเลอรีของอุปกรณ์เพื่อตรวจหาจุดสังเกตของมือแบบคงที่ได้ด้วย

คุณสามารถใช้แอปนี้เป็นจุดเริ่มต้นสําหรับแอป Android ของคุณเอง หรือใช้อ้างอิงเมื่อแก้ไขแอปที่มีอยู่ โค้ดตัวอย่างเครื่องหมายจุดสังเกตบนมือโฮสต์อยู่ใน GitHub

ดาวน์โหลดรหัส

วิธีการต่อไปนี้แสดงวิธีสร้างสำเนาโค้ดตัวอย่างในเครื่องโดยใช้เครื่องมือบรรทัดคำสั่ง git

วิธีดาวน์โหลดโค้ดตัวอย่าง

  1. โคลนที่เก็บ Git โดยใช้คําสั่งต่อไปนี้
    git clone https://github.com/google-ai-edge/mediapipe-samples
    
  2. (ไม่บังคับ) กำหนดค่าอินสแตนซ์ git ให้ใช้การตรวจสอบแบบเบาบางเพื่อให้คุณมีเฉพาะไฟล์สำหรับแอปตัวอย่าง Hand Landmarker เท่านั้น
    cd mediapipe
    git sparse-checkout init --cone
    git sparse-checkout set examples/hand_landmarker/android
    

หลังจากสร้างโค้ดตัวอย่างเวอร์ชันในเครื่องแล้ว คุณสามารถนําเข้าโปรเจ็กต์ไปยัง Android Studio และเรียกใช้แอปได้ ดูวิธีการได้ที่คู่มือการตั้งค่าสําหรับ Android

คอมโพเนนต์หลัก

ไฟล์ต่อไปนี้มีโค้ดสําคัญสําหรับแอปพลิเคชันตัวอย่างการตรวจหาจุดสังเกตของมือ

  • HandLandmarkerHelper.kt - เริ่มต้นตัวตรวจจับจุดสังเกตของมือ รวมถึงจัดการโมเดลและการเลือกผู้รับมอบสิทธิ์
  • MainActivity.kt - ใช้แอปพลิเคชัน รวมถึงการเรียก HandLandmarkerHelper

ตั้งค่า

ส่วนนี้จะอธิบายขั้นตอนสำคัญในการตั้งค่าสภาพแวดล้อมการพัฒนาและโค้ดโปรเจ็กต์เพื่อใช้ Hand Landmarker โดยเฉพาะ ดูข้อมูลทั่วไปเกี่ยวกับการตั้งค่าสภาพแวดล้อมการพัฒนาเพื่อใช้งาน MediaPipe รวมถึงข้อกำหนดเวอร์ชันแพลตฟอร์มได้ที่คู่มือการตั้งค่าสำหรับ Android

การอ้างอิง

งานเครื่องหมายจุดสังเกตของมือใช้ไลบรารี com.google.mediapipe:tasks-vision เพิ่มทรัพยากร Dependency นี้ลงในไฟล์ build.gradle ของแอป Android

dependencies {
    implementation 'com.google.mediapipe:tasks-vision:latest.release'
}

รุ่น

งานเครื่องหมายจุดสังเกตของมือ MediaPipe ต้องใช้กลุ่มโมเดลที่ผ่านการฝึกซึ่งเข้ากันได้กับงานนี้ ดูข้อมูลเพิ่มเติมเกี่ยวกับโมเดลที่ผ่านการฝึกอบรมแล้วสำหรับเครื่องระบุจุดสังเกตบนมือได้ที่ส่วนโมเดลในภาพรวมของงาน

เลือกและดาวน์โหลดโมเดล แล้วจัดเก็บไว้ในไดเรกทอรีโปรเจ็กต์

<dev-project-root>/src/main/assets

ระบุเส้นทางของโมเดลภายในพารามิเตอร์ ModelAssetPath ในโค้ดตัวอย่าง ระบบจะกำหนดโมเดลไว้ในไฟล์ HandLandmarkerHelper.kt ดังนี้

baseOptionBuilder.setModelAssetPath(MP_HAND_LANDMARKER_TASK)

สร้างงาน

งานเครื่องหมายจุดสังเกตของมือ MediaPipe ใช้ฟังก์ชัน createFromOptions() เพื่อตั้งค่างาน ฟังก์ชัน createFromOptions() ยอมรับค่าสำหรับตัวเลือกการกําหนดค่า ดูข้อมูลเพิ่มเติมเกี่ยวกับตัวเลือกการกำหนดค่าได้ที่หัวข้อตัวเลือกการกำหนดค่า

เครื่องมือระบุจุดสังเกตบนมือรองรับข้อมูลอินพุต 3 ประเภท ได้แก่ ภาพนิ่ง ไฟล์วิดีโอ และสตรีมแบบสด คุณต้องระบุโหมดการทํางานที่สอดคล้องกับประเภทข้อมูลอินพุตเมื่อสร้างงาน เลือกแท็บที่สอดคล้องกับประเภทข้อมูลอินพุตเพื่อดูวิธีสร้างงานและเรียกใช้การอนุมาน

รูปภาพ

val baseOptionsBuilder = BaseOptions.builder().setModelAssetPath(MP_HAND_LANDMARKER_TASK)
val baseOptions = baseOptionBuilder.build()

val optionsBuilder =
    HandLandmarker.HandLandmarkerOptions.builder()
        .setBaseOptions(baseOptions)
        .setMinHandDetectionConfidence(minHandDetectionConfidence)
        .setMinTrackingConfidence(minHandTrackingConfidence)
        .setMinHandPresenceConfidence(minHandPresenceConfidence)
        .setNumHands(maxNumHands)
        .setRunningMode(RunningMode.IMAGE)

val options = optionsBuilder.build()

handLandmarker =
    HandLandmarker.createFromOptions(context, options)
    

วิดีโอ

val baseOptionsBuilder = BaseOptions.builder().setModelAssetPath(MP_HAND_LANDMARKER_TASK)
val baseOptions = baseOptionBuilder.build()

val optionsBuilder =
    HandLandmarker.HandLandmarkerOptions.builder()
        .setBaseOptions(baseOptions)
        .setMinHandDetectionConfidence(minHandDetectionConfidence)
        .setMinTrackingConfidence(minHandTrackingConfidence)
        .setMinHandPresenceConfidence(minHandPresenceConfidence)
        .setNumHands(maxNumHands)
        .setRunningMode(RunningMode.VIDEO)

val options = optionsBuilder.build()

handLandmarker =
    HandLandmarker.createFromOptions(context, options)
    

ไลฟ์สด

val baseOptionsBuilder = BaseOptions.builder().setModelAssetPath(MP_HAND_LANDMARKER_TASK)
val baseOptions = baseOptionBuilder.build()

val optionsBuilder =
    HandLandmarker.HandLandmarkerOptions.builder()
        .setBaseOptions(baseOptions)
        .setMinHandDetectionConfidence(minHandDetectionConfidence)
        .setMinTrackingConfidence(minHandTrackingConfidence)
        .setMinHandPresenceConfidence(minHandPresenceConfidence)
        .setNumHands(maxNumHands)
        .setResultListener(this::returnLivestreamResult)
        .setErrorListener(this::returnLivestreamError)
        .setRunningMode(RunningMode.VIDEO)

val options = optionsBuilder.build()

handLandmarker =
    HandLandmarker.createFromOptions(context, options)
    

การใช้โค้ดตัวอย่างเครื่องหมายจุดสังเกตของมือช่วยให้ผู้ใช้สลับระหว่างโหมดการประมวลผลได้ แนวทางนี้ทําให้โค้ดการสร้างงานซับซ้อนขึ้นและอาจไม่เหมาะกับกรณีการใช้งานของคุณ คุณจะเห็นโค้ดนี้ในไฟล์ HandLandmarkerHelper.kt ของฟังก์ชัน setupHandLandmarker()

ตัวเลือกการกำหนดค่า

งานนี้มีตัวเลือกการกำหนดค่าต่อไปนี้สำหรับแอป Android

ชื่อตัวเลือก คำอธิบาย ช่วงของค่า ค่าเริ่มต้น
runningMode ตั้งค่าโหมดการทํางานสําหรับงาน โดยโหมดมี 3 แบบ ดังนี้

รูปภาพ: โหมดสำหรับอินพุตรูปภาพเดียว

วิดีโอ: โหมดสำหรับเฟรมที่ถอดรหัสของวิดีโอ

LIVE_STREAM: โหมดสตรีมแบบสดของข้อมูลอินพุต เช่น จากกล้อง ในโหมดนี้ คุณต้องเรียกใช้ resultListener เพื่อตั้งค่า Listener เพื่อรับผลลัพธ์แบบไม่พร้อมกัน
{IMAGE, VIDEO, LIVE_STREAM} IMAGE
numHands จํานวนมือสูงสุดที่ตรวจพบโดยตัวตรวจจับจุดสังเกตของมือ Any integer > 0 1
minHandDetectionConfidence คะแนนความน่าเชื่อถือขั้นต่ำที่การตรวจจับมือจะถือว่าประสบความสำเร็จในโมเดลการตรวจจับฝ่ามือ 0.0 - 1.0 0.5
minHandPresenceConfidence คะแนนความเชื่อมั่นขั้นต่ำสำหรับคะแนนการมีอยู่ของมือในโมเดลการตรวจหาจุดสังเกตของมือ ในโหมดวิดีโอและโหมดสตรีมแบบสด หากคะแนนความเชื่อมั่นของมือจากโมเดลจุดสังเกตของมือต่ำกว่าเกณฑ์นี้ ตัวระบุจุดสังเกตของมือจะทริกเกอร์โมเดลการตรวจจับฝ่ามือ หรืออัลกอริทึมการติดตามมือแบบเบาจะระบุตำแหน่งของมือเพื่อการตรวจหาจุดสังเกตในภายหลัง 0.0 - 1.0 0.5
minTrackingConfidence คะแนนความเชื่อมั่นขั้นต่ำสำหรับการติดตามมือที่ถือว่าสำเร็จ นี่คือเกณฑ์ IoU ของขอบเขตระหว่างมือในเฟรมปัจจุบันกับเฟรมสุดท้าย ในโหมดวิดีโอและโหมดสตรีมของ Hand Landmarker หากการติดตามไม่สำเร็จ Hand Landmarker จะทริกเกอร์การตรวจจับมือ ไม่เช่นนั้น ระบบจะข้ามการตรวจจับมือ 0.0 - 1.0 0.5
resultListener ตั้งค่าโปรแกรมรับฟังผลลัพธ์ให้รับผลลัพธ์การตรวจจับแบบไม่พร้อมกันเมื่อเครื่องหมายจุดสังเกตของมืออยู่ในโหมดสตรีมแบบสด มีผลเฉพาะเมื่อตั้งค่าโหมดการทํางานเป็น LIVE_STREAM ไม่มี ไม่มี
errorListener ตั้งค่าโปรแกรมรับฟังข้อผิดพลาด (ไม่บังคับ) ไม่มี ไม่มี

เตรียมข้อมูล

เครื่องมือระบุจุดสังเกตของมือใช้ได้กับรูปภาพ ไฟล์วิดีโอ และวิดีโอสตรีมแบบสด งานจะจัดการการประมวลผลข้อมูลอินพุตก่อนการประมวลผล ซึ่งรวมถึงการปรับขนาด การหมุน และการปรับค่าให้เป็นไปตามมาตรฐาน

โค้ดต่อไปนี้แสดงวิธีส่งต่อข้อมูลเพื่อประมวลผล ตัวอย่างเหล่านี้มีรายละเอียดเกี่ยวกับวิธีจัดการข้อมูลจากรูปภาพ ไฟล์วิดีโอ และสตรีมวิดีโอสด

รูปภาพ

import com.google.mediapipe.framework.image.BitmapImageBuilder
import com.google.mediapipe.framework.image.MPImage

// Convert the input Bitmap object to an MPImage object to run inference
val mpImage = BitmapImageBuilder(image).build()
    

วิดีโอ

import com.google.mediapipe.framework.image.BitmapImageBuilder
import com.google.mediapipe.framework.image.MPImage

val argb8888Frame =
    if (frame.config == Bitmap.Config.ARGB_8888) frame
    else frame.copy(Bitmap.Config.ARGB_8888, false)

// Convert the input Bitmap object to an MPImage object to run inference
val mpImage = BitmapImageBuilder(argb8888Frame).build()
    

ไลฟ์สด

import com.google.mediapipe.framework.image.BitmapImageBuilder
import com.google.mediapipe.framework.image.MPImage

// Convert the input Bitmap object to an MPImage object to run inference
val mpImage = BitmapImageBuilder(rotatedBitmap).build()
    

ในโค้ดตัวอย่างเครื่องหมายจุดสังเกตของมือ ระบบจะจัดการการเตรียมข้อมูลในไฟล์ HandLandmarkerHelper.kt

เรียกใช้งาน

ใช้HandLandmarker.detect...()วิธีการเฉพาะสำหรับประเภทข้อมูลนั้นๆ โดยขึ้นอยู่กับประเภทข้อมูลที่คุณกำลังดำเนินการ ใช้ detect() สำหรับรูปภาพแต่ละรูป detectForVideo() สำหรับเฟรมในไฟล์วิดีโอ และ detectAsync() สำหรับสตรีมวิดีโอ เมื่อทำการตรวจจับในสตรีมวิดีโอ ให้ตรวจสอบว่าคุณเรียกใช้การตรวจจับในเธรดแยกต่างหากเพื่อหลีกเลี่ยงการบล็อกเธรดอินเทอร์เฟซผู้ใช้

ตัวอย่างโค้ดต่อไปนี้แสดงตัวอย่างง่ายๆ ของวิธีเรียกใช้เครื่องหมายจุดสังเกตของมือในโหมดข้อมูลต่างๆ ต่อไปนี้

รูปภาพ

val result = handLandmarker?.detect(mpImage)
    

วิดีโอ

val timestampMs = i * inferenceIntervalMs

handLandmarker?.detectForVideo(mpImage, timestampMs)
    ?.let { detectionResult ->
        resultList.add(detectionResult)
    }
    

ไลฟ์สด

val mpImage = BitmapImageBuilder(rotatedBitmap).build()
val frameTime = SystemClock.uptimeMillis()

handLandmarker?.detectAsync(mpImage, frameTime)
    

โปรดทราบดังต่อไปนี้

  • เมื่อทำงานในโหมดวิดีโอหรือโหมดสตรีมแบบสด คุณต้องระบุการประทับเวลาของเฟรมอินพุตให้กับงาน Hand Landmarker ด้วย
  • เมื่อทำงานในโหมดรูปภาพหรือวิดีโอ งานเครื่องหมายจุดสังเกตของมือจะบล็อกเธรดปัจจุบันจนกว่าจะประมวลผลรูปภาพหรือเฟรมอินพุตเสร็จ ดำเนินการประมวลผลในเธรดแบ็กกราวด์เพื่อหลีกเลี่ยงการบล็อกอินเทอร์เฟซผู้ใช้
  • เมื่อทำงานในโหมดสตรีมแบบสด งานเครื่องหมายจุดสังเกตของมือจะไม่บล็อกเธรดปัจจุบัน แต่จะแสดงผลทันที โดยจะเรียกใช้โปรแกรมรับฟังผลลัพธ์พร้อมผลการตรวจจับทุกครั้งที่ประมวลผลเฟรมอินพุตเสร็จแล้ว หากมีการเรียกใช้ฟังก์ชันการตรวจจับเมื่องานเครื่องหมายจุดสังเกตของมือไม่ว่างประมวลผลเฟรมอื่น งานจะละเว้นเฟรมอินพุตใหม่

ในโค้ดตัวอย่างเครื่องระบุจุดสังเกตบนมือ ฟังก์ชัน detect, detectForVideo และ detectAsync จะกำหนดไว้ในไฟล์ HandLandmarkerHelper.kt

จัดการและแสดงผลลัพธ์

เครื่องมือระบุจุดสังเกตของมือจะสร้างออบเจ็กต์ผลลัพธ์ของเครื่องมือระบุจุดสังเกตของมือสําหรับการเรียกใช้การตรวจจับแต่ละครั้ง ออบเจ็กต์ผลลัพธ์ประกอบด้วยจุดสังเกตของมือในพิกัดรูปภาพ จุดสังเกตของมือในพิกัดโลก และลักษณะการจับถือ(มือซ้าย/ขวา) ของมือที่ตรวจพบ

ต่อไปนี้เป็นตัวอย่างข้อมูลเอาต์พุตจากงานนี้

เอาต์พุต HandLandmarkerResult ประกอบด้วยคอมโพเนนต์ 3 รายการ คอมโพเนนต์แต่ละรายการเป็นอาร์เรย์ โดยแต่ละองค์ประกอบจะมีผลลัพธ์ต่อไปนี้สําหรับมือที่ตรวจพบ 1 ข้าง

  • ความถนัดของมือ

    ลักษณะการจับถือแสดงว่ามือที่ตรวจพบเป็นมือซ้ายหรือมือขวา

  • จุดสังเกต

    มีจุดสังเกตบนมือ 21 จุด โดยแต่ละจุดประกอบด้วยพิกัด x, y และ z ระบบจะปรับพิกัด x และ y เป็น [0.0, 1.0] ตามความกว้างและความสูงของรูปภาพตามลำดับ พิกัด z แสดงถึงระดับความลึกของจุดสังเกต โดยที่ระดับความลึกที่ข้อมือคือจุดเริ่มต้น ยิ่งค่านี้เล็ก สถานที่สำคัญก็จะยิ่งอยู่ใกล้กับกล้อง ขนาดของ z ใช้มาตราส่วนเดียวกับ x โดยประมาณ

  • สถานที่สำคัญของโลก

    นอกจากนี้ สถานที่สำคัญ 21 แห่งบนมือจะแสดงเป็นพิกัดโลกด้วย จุดสังเกตแต่ละจุดประกอบด้วย x, y และ z ซึ่งแสดงพิกัด 3 มิติในชีวิตจริงเป็นเมตร โดยจุดเริ่มต้นอยู่ที่จุดศูนย์กลางเชิงเรขาคณิตของมือ

HandLandmarkerResult:
  Handedness:
    Categories #0:
      index        : 0
      score        : 0.98396
      categoryName : Left
  Landmarks:
    Landmark #0:
      x            : 0.638852
      y            : 0.671197
      z            : -3.41E-7
    Landmark #1:
      x            : 0.634599
      y            : 0.536441
      z            : -0.06984
    ... (21 landmarks for a hand)
  WorldLandmarks:
    Landmark #0:
      x            : 0.067485
      y            : 0.031084
      z            : 0.055223
    Landmark #1:
      x            : 0.063209
      y            : -0.00382
      z            : 0.020920
    ... (21 world landmarks for a hand)

รูปภาพต่อไปนี้แสดงภาพเอาต์พุตของงาน

มือทำท่าชูนิ้วโป้งพร้อมโครงกระดูกของมือ

โค้ดตัวอย่าง Hand Landmarker แสดงวิธีแสดงผลลัพธ์ที่แสดงผลจากงาน ดูรายละเอียดเพิ่มเติมได้ในคลาส OverlayView