Panduan deteksi objek untuk Web

Tugas MediaPipe Object Detector memungkinkan Anda mendeteksi kehadiran dan lokasi beberapa class objek. Tugas ini mengambil data gambar dan menghasilkan daftar hasil deteksi, yang masing-masing mewakili objek yang diidentifikasi dalam gambar. Contoh kode yang dijelaskan dalam petunjuk ini tersedia di CodePen.

Anda dapat melihat cara kerja tugas ini dengan melihat demo. Untuk informasi selengkapnya tentang kemampuan, model, dan opsi konfigurasi tugas ini, lihat Ringkasan.

Contoh kode

Kode contoh untuk Object Detector memberikan implementasi lengkap tugas ini di JavaScript sebagai referensi Anda. Kode ini membantu Anda menguji tugas ini dan memulai pembuatan aplikasi klasifikasi teks Anda sendiri. Anda dapat melihat, menjalankan, dan mengedit kode contoh Detektor Objek hanya menggunakan browser web.

Penyiapan

Bagian ini menjelaskan langkah-langkah utama untuk menyiapkan lingkungan pengembangan Anda khusus untuk menggunakan Object Detector. Untuk informasi umum tentang cara menyiapkan lingkungan pengembangan web dan JavaScript, termasuk persyaratan versi platform, lihat Panduan penyiapan untuk web.

Paket JavaScript

Kode Pendeteksi Objek tersedia melalui paket @mediapipe/tasks-vision MediaPipe NPM. Anda dapat menemukan dan mendownload library ini dengan mengikuti petunjuk di Panduan penyiapan platform.

Anda dapat menginstal paket yang diperlukan melalui NPM menggunakan perintah berikut:

npm install @mediapipe/tasks-vision

Jika Anda ingin mengimpor kode tugas melalui layanan jaringan penayangan konten (CDN), tambahkan kode berikut di tag <head> dalam file HTML Anda:

<!-- You can replace JSDeliver with another CDN if you prefer to -->
<head>
  <script src="https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision/vision_bundle.js"
    crossorigin="anonymous"></script>
</head>

Model

Tugas MediaPipe Object Detector memerlukan model terlatih yang kompatibel dengan tugas ini. Untuk mengetahui informasi selengkapnya tentang model terlatih yang tersedia untuk Object Detector, lihat ringkasan tugas di bagian Model.

Pilih dan download model, lalu simpan dalam direktori project Anda:

<dev-project-root>/app/shared/models/

Membuat tugas

Gunakan salah satu fungsi ObjectDetector.createFrom...() Detektor Objek untuk menyiapkan tugas guna menjalankan inferensi. Gunakan fungsi createFromModelPath() dengan jalur relatif atau absolut ke file model yang telah dilatih. Jika model sudah dimuat ke dalam memori, Anda dapat menggunakan metode createFromModelBuffer(). Contoh kode di bawah menunjukkan penggunaan fungsi createFromOptions(), yang memungkinkan Anda menetapkan lebih banyak opsi konfigurasi. Untuk informasi selengkapnya tentang opsi konfigurasi yang tersedia, lihat bagian Opsi konfigurasi.

Kode berikut menunjukkan cara mem-build dan mengonfigurasi tugas ini:

const vision = await FilesetResolver.forVisionTasks(
  // path/to/wasm/root
  "https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@latest/wasm"
);
objectDetector = await ObjectDetector.createFromOptions(vision, {
  baseOptions: {
    modelAssetPath: `https://storage.googleapis.com/mediapipe-tasks/object_detector/efficientdet_lite0_uint8.tflite`
  },
  scoreThreshold: 0.5,
  runningMode: runningMode
});

Untuk implementasi yang lebih lengkap dalam membuat tugas Object Detector, lihat contoh kode.

Opsi konfigurasi

Tugas ini memiliki opsi konfigurasi berikut untuk aplikasi Web:

Nama Opsi Deskripsi Rentang Nilai Nilai Default
runningMode Menetapkan mode berjalan untuk tugas. Ada dua mode:

IMAGE: Mode untuk input gambar tunggal.

VIDEO: Mode untuk frame yang didekode dari video atau pada live stream data input, seperti dari kamera.
{IMAGE, VIDEO} IMAGE
displayNamesLocale Menetapkan bahasa label yang akan digunakan untuk nama tampilan yang diberikan dalam metadata model tugas, jika tersedia. Default-nya adalah en untuk bahasa Inggris. Anda dapat menambahkan label yang dilokalkan ke metadata model kustom menggunakan TensorFlow Lite Metadata Writer API Kode lokalitas id
maxResults Menetapkan jumlah maksimum opsional hasil deteksi dengan skor tertinggi yang akan ditampilkan. Angka positif apa pun -1 (semua hasil ditampilkan)
scoreThreshold Menetapkan nilai minimum skor prediksi yang menggantikan nilai yang diberikan dalam metadata model (jika ada). Hasil di bawah nilai ini akan ditolak. Semua float Tidak ditetapkan
categoryAllowlist Menetapkan daftar opsional nama kategori yang diizinkan. Jika tidak kosong, hasil deteksi yang nama kategorinya tidak ada dalam kumpulan ini akan difilter. Nama kategori duplikat atau tidak dikenal akan diabaikan. Opsi ini saling eksklusif dengan categoryDenylist dan menggunakan keduanya akan menghasilkan error. String apa pun Tidak ditetapkan
categoryDenylist Menetapkan daftar opsional nama kategori yang tidak diizinkan. Jika tidak kosong, hasil deteksi yang nama kategorinya ada dalam set ini akan difilter keluar. Nama kategori duplikat atau tidak dikenal akan diabaikan. Opsi ini saling eksklusif dengan categoryAllowlist dan menggunakan keduanya akan menyebabkan error. String apa pun Tidak ditetapkan

Menyiapkan data

Object Detector dapat mendeteksi objek dalam gambar dalam format apa pun yang didukung oleh browser host. Tugas ini juga menangani prapemrosesan input data, termasuk perubahan ukuran, rotasi, dan normalisasi nilai. Untuk mendeteksi objek dalam video, Anda dapat menggunakan API untuk memproses frame satu per satu dengan cepat, menggunakan stempel waktu frame untuk menentukan kapan gestur terjadi dalam video.

Menjalankan tugas

Detektor Objek menggunakan detect() untuk mengerjakan satu gambar dan detectForVideo() bekerja mendeteksi objek dalam frame video. Tugas memproses data, mencoba mengenali objek, lalu melaporkan hasilnya.

Panggilan ke metode detect() dan detectForVideo() berjalan secara sinkron dan memblokir thread antarmuka pengguna. Jika Anda mengenali objek dalam frame video dari kamera perangkat, setiap klasifikasi akan memblokir thread utama. Anda dapat mencegahnya dengan menerapkan pekerja web untuk menjalankan deteksi pada thread lain.

Kode berikut menunjukkan cara menjalankan pemrosesan dengan model tugas:

Gambar

const image = document.getElementById("image") as HTMLImageElement;
const detections = objectDetector.detect(image);

Video

await objectDetector.setOptions({ runningMode: "video" });

let lastVideoTime = -1;
function renderLoop(): void {
  const video = document.getElementById("video");

  if (video.currentTime !== lastVideoTime) {
    const detections = detector.detectForVideo(video);
    processResults(detections);
    lastVideoTime = video.currentTime;
  }

  requestAnimationFrame(() => {
    renderLoop();
  });
}

Untuk implementasi yang lebih lengkap dalam menjalankan tugas Pendeteksi Objek, lihat contoh kode.

Menangani dan menampilkan hasil

Detektor Objek menghasilkan objek hasil deteksi untuk setiap deteksi yang dijalankan. Objek hasil berisi daftar deteksi, dengan setiap deteksi menyertakan kotak pembatas dan informasi kategori tentang objek yang terdeteksi, termasuk nama objek dan skor keyakinan.

Berikut adalah contoh data output dari tugas ini:

ObjectDetectorResult:
 Detection #0:
  Box: (x: 355, y: 133, w: 190, h: 206)
  Categories:
   index       : 17
   score       : 0.73828
   class name  : dog
 Detection #1:
  Box: (x: 103, y: 15, w: 138, h: 369)
  Categories:
   index       : 17
   score       : 0.73047
   class name  : dog

Gambar berikut menunjukkan visualisasi output tugas:

Dua yang ditandai dengan kotak pembatas

Kode contoh Pendeteksi Objek menunjukkan cara menampilkan hasil deteksi yang ditampilkan dari tugas, lihat contoh kode untuk mengetahui detailnya.