Panduan deteksi penanda tangan untuk Web

Tugas MediaPipe Hand Landmarker memungkinkan Anda mendeteksi landmark tangan dalam gambar. Petunjuk ini menunjukkan cara menggunakan Hand Landmarker untuk aplikasi web dan JavaScript.

Untuk informasi selengkapnya tentang kemampuan, model, dan opsi konfigurasi tugas ini, lihat Ringkasan.

Contoh kode

Kode contoh untuk Hand Landmarker memberikan implementasi lengkap tugas ini dalam JavaScript sebagai referensi Anda. Kode ini membantu Anda menguji tugas ini dan mulai mem-build aplikasi deteksi penanda tangan Anda sendiri. Anda dapat melihat, menjalankan, dan mengedit kode contoh Penanda Tangan hanya menggunakan browser web.

Penyiapan

Bagian ini menjelaskan langkah-langkah utama untuk menyiapkan lingkungan pengembangan Anda khusus untuk menggunakan Hand Landmarker. Untuk informasi umum tentang cara menyiapkan lingkungan pengembangan web dan JavaScript, termasuk persyaratan versi platform, lihat Panduan penyiapan untuk web.

Paket JavaScript

Kode Hand Landmarker tersedia melalui paket @mediapipe/tasks-vision NPM MediaPipe. Anda dapat menemukan dan mendownload library ini dengan mengikuti petunjuk di Panduan penyiapan platform.

Anda dapat menginstal paket yang diperlukan melalui NPM menggunakan perintah berikut:

npm install @mediapipe/tasks-vision

Jika Anda ingin mengimpor kode tugas melalui layanan jaringan penayangan konten (CDN), tambahkan kode berikut di tag <head> dalam file HTML Anda:

<!-- You can replace JSDeliver with another CDN if you prefer to -->
<head>
  <script src="https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision/vision_bundle.js"
    crossorigin="anonymous"></script>
</head>

Model

Tugas MediaPipe Hand Landmarker memerlukan model terlatih yang kompatibel dengan tugas ini. Untuk mengetahui informasi selengkapnya tentang model terlatih yang tersedia untuk Hand Landmarker, lihat bagian Model ringkasan tugas.

Pilih dan download model, lalu simpan dalam direktori project Anda:

<dev-project-root>/app/shared/models/

Membuat tugas

Gunakan salah satu fungsi createFrom...() Hand Landmarker untuk menyiapkan tugas guna menjalankan inferensi. Gunakan fungsi createFromModelPath() dengan jalur relatif atau absolut ke file model yang telah dilatih. Jika model sudah dimuat ke dalam memori, Anda dapat menggunakan metode createFromModelBuffer().

Contoh kode di bawah menunjukkan penggunaan fungsi createFromOptions() untuk menyiapkan tugas. Fungsi createFromOptions memungkinkan Anda menyesuaikan Hand Landmarker dengan opsi konfigurasi. Untuk informasi selengkapnya tentang opsi konfigurasi, lihat Opsi konfigurasi.

Kode berikut menunjukkan cara mem-build dan mengonfigurasi tugas dengan opsi kustom:

const vision = await FilesetResolver.forVisionTasks(
  // path/to/wasm/root
  "https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@latest/wasm"
);
const handLandmarker = await HandLandmarker.createFromOptions(
    vision,
    {
      baseOptions: {
        modelAssetPath: "hand_landmarker.task"
      },
      numHands: 2
    });

Opsi konfigurasi

Tugas ini memiliki opsi konfigurasi berikut untuk aplikasi Web dan JavaScript:

Nama Opsi Deskripsi Rentang Nilai Nilai Default
runningMode Menetapkan mode berjalan untuk tugas. Ada dua mode:

IMAGE: Mode untuk input gambar tunggal.

VIDEO: Mode untuk frame yang didekode dari video atau pada live stream data input, seperti dari kamera.
{IMAGE, VIDEO} IMAGE
numHands Jumlah maksimum tangan yang terdeteksi oleh pendeteksi penanda Tangan. Any integer > 0 1
minHandDetectionConfidence Skor keyakinan minimum agar deteksi tangan dianggap berhasil dalam model deteksi telapak tangan. 0.0 - 1.0 0.5
minHandPresenceConfidence Skor keyakinan minimum untuk skor kehadiran tangan dalam model deteksi penanda tangan. Dalam mode Video dan mode Live stream, jika skor keyakinan kehadiran tangan dari model penanda tangan berada di bawah ambang batas ini, Penanda Tangan akan memicu model deteksi telapak tangan. Jika tidak, algoritma pelacakan tangan ringan akan menentukan lokasi tangan untuk deteksi penanda berikutnya. 0.0 - 1.0 0.5
minTrackingConfidence Skor keyakinan minimum agar pelacakan tangan dianggap berhasil. Ini adalah nilai minimum IoU kotak pembatas antara tangan dalam frame saat ini dan frame terakhir. Dalam mode Video dan mode Streaming Hand Landmarker, jika pelacakan gagal, Hand Landmarker akan memicu deteksi tangan. Jika tidak, deteksi tangan akan dilewati. 0.0 - 1.0 0.5

Menyiapkan data

Hand Landmarker dapat mendeteksi penanda tangan dalam gambar dalam format apa pun yang didukung oleh browser host. Tugas ini juga menangani prapemrosesan input data, termasuk perubahan ukuran, rotasi, dan normalisasi nilai. Untuk mendeteksi penanda tangan dalam video, Anda dapat menggunakan API untuk memproses satu frame secara cepat, menggunakan stempel waktu frame untuk menentukan kapan penanda tangan muncul dalam video.

Menjalankan tugas

Hand Landmarker menggunakan metode detect() (dengan mode berjalan image) dan detectForVideo() (dengan mode berjalan video) untuk memicu inferensi. Tugas ini memproses data, mencoba mendeteksi penanda tangan, lalu melaporkan hasilnya.

Panggilan ke metode detect() dan detectForVideo() Hand Landmarker berjalan secara sinkron dan memblokir thread antarmuka pengguna. Jika Anda mendeteksi penanda tangan dalam frame video dari kamera perangkat, setiap deteksi akan memblokir thread utama. Anda dapat mencegah hal ini dengan menerapkan pekerja web untuk menjalankan metode detect() dan detectForVideo() di thread lain.

Kode berikut menunjukkan cara menjalankan pemrosesan dengan model tugas:

Gambar

const image = document.getElementById("image") as HTMLImageElement;
const handLandmarkerResult = handLandmarker.detect(image);

Video

await handLandmarker.setOptions({ runningMode: "video" });

let lastVideoTime = -1;
function renderLoop(): void {
  const video = document.getElementById("video");

  if (video.currentTime !== lastVideoTime) {
    const detections = handLandmarker.detectForVideo(video);
    processResults(detections);
    lastVideoTime = video.currentTime;
  }

  requestAnimationFrame(() => {
    renderLoop();
  });
}

Untuk implementasi yang lebih lengkap dalam menjalankan tugas Hand Landmarker, lihat contoh kode.

Menangani dan menampilkan hasil

Hand Landmarker menghasilkan objek hasil penanda tangan untuk setiap deteksi yang dijalankan. Objek hasil berisi penanda tangan dalam koordinat gambar, penanda tangan dalam koordinat dunia, dan tangan dominan(tangan kiri/kanan) dari tangan yang terdeteksi.

Berikut adalah contoh data output dari tugas ini:

Output HandLandmarkerResult berisi tiga komponen. Setiap komponen adalah array, dengan setiap elemen berisi hasil berikut untuk satu tangan yang terdeteksi:

  • Tangan dominan

    Kecenderungan tangan menunjukkan apakah tangan yang terdeteksi adalah tangan kiri atau kanan.

  • Tempat terkenal

    Ada 21 penanda tangan, masing-masing terdiri dari koordinat x, y, dan z. Koordinat x dan y dinormalisasi ke [0,0, 1,0] berdasarkan lebar dan tinggi gambar. Koordinat z mewakili kedalaman penanda, dengan kedalaman di pergelangan tangan sebagai asal. Makin kecil nilainya, makin dekat penanda ke kamera. Besar z menggunakan skala yang kira-kira sama dengan x.

  • Landmark Dunia

    21 penanda tangan juga ditampilkan dalam koordinat dunia. Setiap penanda geografis terdiri dari x, y, dan z, yang mewakili koordinat 3D dunia nyata dalam meter dengan asal di pusat geometris tangan.

HandLandmarkerResult:
  Handedness:
    Categories #0:
      index        : 0
      score        : 0.98396
      categoryName : Left
  Landmarks:
    Landmark #0:
      x            : 0.638852
      y            : 0.671197
      z            : -3.41E-7
    Landmark #1:
      x            : 0.634599
      y            : 0.536441
      z            : -0.06984
    ... (21 landmarks for a hand)
  WorldLandmarks:
    Landmark #0:
      x            : 0.067485
      y            : 0.031084
      z            : 0.055223
    Landmark #1:
      x            : 0.063209
      y            : -0.00382
      z            : 0.020920
    ... (21 world landmarks for a hand)

Gambar berikut menunjukkan visualisasi output tugas:

Tangan dalam gerakan mengacungkan jempol dengan struktur kerangka tangan yang dipetakan

Kode contoh Hand Landmarker menunjukkan cara menampilkan hasil yang ditampilkan dari tugas, lihat contoh kode