Guía de reconocimiento de gestos para la Web

La tarea del reconocedor de gestos de MediaPipe te permite reconocer gestos manuales en tiempo real y proporciona los resultados reconocidos y los puntos de referencia de las manos detectadas. En estas instrucciones, se muestra cómo usar el Gesto de reconocimiento para apps web y de JavaScript.

Puedes ver esta tarea en acción si miras la demo. Para obtener más información sobre las funciones, los modelos y las opciones de configuración de esta tarea, consulta la descripción general.

Ejemplo de código

El código de ejemplo de Gesture Recognizer proporciona una implementación completa de esta tarea en JavaScript como referencia. Este código te ayuda a probar esta tarea y comenzar a compilar tu propia app de reconocimiento de gestos. Puedes ver, ejecutar y editar el código de ejemplo del detector de gestos solo con tu navegador web.

Configuración

En esta sección, se describen los pasos clave para configurar tu entorno de desarrollo expresamente para usar el Detector de gestos. Para obtener información general sobre la configuración de tu entorno de desarrollo web y de JavaScript, incluidos los requisitos de versión de la plataforma, consulta la Guía de configuración para la Web.

Paquetes de JavaScript

El código del Gestor de gestos está disponible a través del paquete @mediapipe/tasks-vision MediaPipe NPM. Para encontrar y descargar estas bibliotecas, sigue las instrucciones de la guía de configuración de la plataforma.

Puedes instalar los paquetes necesarios a través de NPM con el siguiente comando:

npm install @mediapipe/tasks-vision

Si deseas importar el código de la tarea a través de un servicio de red de distribución de contenido (CDN), agrega el siguiente código en la etiqueta <head> de tu archivo HTML:

<!-- You can replace JSDeliver with another CDN if you prefer to -->
<head>
  <script src="https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision/vision_bundle.js"
    crossorigin="anonymous"></script>
</head>

Modelo

La tarea del Reconocedor de gestos de MediaPipe requiere un modelo entrenado que sea compatible con esta tarea. Para obtener más información sobre los modelos entrenados disponibles para el Reconocedor de gestos, consulta la sección Modelos de la descripción general de la tarea.

Selecciona y descarga el modelo, y guárdalo en el directorio de tu proyecto:

<dev-project-root>/app/shared/models/

Crea la tarea

Usa una de las funciones createFrom...() del Reconocedor de gestos para preparar la tarea para ejecutar inferencias. Usa la función createFromModelPath() con una ruta de acceso relativa o absoluta al archivo del modelo entrenado. Si tu modelo ya se cargó en la memoria, puedes usar el método createFromModelBuffer().

En el siguiente ejemplo de código, se muestra el uso de la función createFromOptions() para configurar la tarea. La función createFromOptions te permite personalizar el Reconocedor de gestos con opciones de configuración. Para obtener más información sobre las opciones de configuración, consulta Opciones de configuración.

En el siguiente código, se muestra cómo compilar y configurar la tarea con opciones personalizadas:

// Create task for image file processing:
const vision = await FilesetResolver.forVisionTasks(
  // path/to/wasm/root
  "https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@latest/wasm "
);
const gestureRecognizer = await GestureRecognizer.createFromOptions(vision, {
  baseOptions: {
    modelAssetPath: "https://storage.googleapis.com/mediapipe-tasks/gesture_recognizer/gesture_recognizer.task"
  },
  numHands: 2
});

Opciones de configuración

Esta tarea tiene las siguientes opciones de configuración para aplicaciones web:

Nombre de la opción Descripción Rango de valores Valor predeterminado
runningMode Establece el modo de ejecución de la tarea. Existen dos modos:

IMAGE: Es el modo para entradas de una sola imagen.

VIDEO: Es el modo para los fotogramas decodificados de un video o en una transmisión en vivo de datos de entrada, como los de una cámara.
{IMAGE, VIDEO} IMAGE
num_hands GestureRecognizer puede detectar la cantidad máxima de manos. Any integer > 0 1
min_hand_detection_confidence Es la puntuación de confianza mínima para que la detección de la mano se considere exitosa en el modelo de detección de la palma. 0.0 - 1.0 0.5
min_hand_presence_confidence Es la puntuación de confianza mínima de la puntuación de presencia de la mano en el modelo de detección de puntos de referencia de la mano. En el modo de video y en el modo de transmisión en vivo del Reconocedor de gestos, si la puntuación de confianza de la presencia de la mano del modelo de punto de referencia de la mano está por debajo de este umbral, se activa el modelo de detección de palmas. De lo contrario, se usa un algoritmo de seguimiento de manos ligero para determinar la ubicación de las manos para la detección de puntos de referencia posterior. 0.0 - 1.0 0.5
min_tracking_confidence Es la puntuación de confianza mínima para que el seguimiento de manos se considere exitoso. Este es el umbral de IoU del cuadro de límite entre las manos en el fotograma actual y el último. En el modo de video y el modo de transmisión del Reconocedor de gestos, si el seguimiento falla, el Reconocedor de gestos activa la detección de la mano. De lo contrario, se omite la detección de manos. 0.0 - 1.0 0.5
canned_gestures_classifier_options Son opciones para configurar el comportamiento del clasificador de gestos predefinidos. Los gestos predeterminados son ["None", "Closed_Fist", "Open_Palm", "Pointing_Up", "Thumb_Down", "Thumb_Up", "Victory", "ILoveYou"]
.
  • Configuración regional de los nombres visibles: Es la configuración regional que se usará para los nombres visibles especificados a través de los metadatos del modelo de TFLite, si los hay.
  • Max results: Es la cantidad máxima de resultados de clasificación con la puntuación más alta que se mostrarán. Si es menor que 0, se mostrarán todos los resultados disponibles.
  • Umbral de puntuación: Es la puntuación por debajo de la cual se rechazan los resultados. Si se establece en 0, se mostrarán todos los resultados disponibles.
  • Lista de entidades permitidas de categorías: Es la lista de entidades permitidas de nombres de categorías. Si no está vacío, se filtrarán los resultados de clasificación cuya categoría no esté en este conjunto. Es mutuamente excluyente con la lista de entidades rechazadas.
  • Lista de bloqueo de categorías: Es la lista de bloqueo de nombres de categorías. Si no está vacío, se filtrarán los resultados de clasificación cuya categoría esté en este conjunto. Es mutuamente excluyente con la lista de entidades permitidas.
    • Configuración regional de los nombres visibles: any string
    • Resultados máximos: any integer
    • Umbral de puntuación: 0.0-1.0
    • Lista de entidades permitidas de categorías: vector of strings
    • Lista de bloqueo de categorías: vector of strings
    • Configuración regional de los nombres visibles: "en"
    • Resultados máximos: -1
    • Umbral de puntuación: 0
    • Lista de entidades permitidas de categorías: vacía
    • Lista de bloqueo de categorías: vacía
    custom_gestures_classifier_options Son opciones para configurar el comportamiento del clasificador de gestos personalizados.
  • Configuración regional de los nombres visibles: Es la configuración regional que se usará para los nombres visibles especificados a través de los metadatos del modelo de TFLite, si los hay.
  • Max results: Es la cantidad máxima de resultados de clasificación con la puntuación más alta que se mostrarán. Si es menor que 0, se mostrarán todos los resultados disponibles.
  • Umbral de puntuación: Es la puntuación por debajo de la cual se rechazan los resultados. Si se establece en 0, se mostrarán todos los resultados disponibles.
  • Lista de entidades permitidas de categorías: Es la lista de entidades permitidas de nombres de categorías. Si no está vacío, se filtrarán los resultados de clasificación cuya categoría no esté en este conjunto. Es mutuamente excluyente con la lista de entidades rechazadas.
  • Lista de bloqueo de categorías: Es la lista de bloqueo de nombres de categorías. Si no está vacío, se filtrarán los resultados de clasificación cuya categoría esté en este conjunto. Es mutuamente excluyente con la lista de entidades permitidas.
    • Configuración regional de los nombres visibles: any string
    • Resultados máximos: any integer
    • Umbral de puntuación: 0.0-1.0
    • Lista de entidades permitidas de categorías: vector of strings
    • Lista de bloqueo de categorías: vector of strings
    • Configuración regional de los nombres visibles: "en"
    • Resultados máximos: -1
    • Umbral de puntuación: 0
    • Lista de entidades permitidas de categorías: vacía
    • Lista de bloqueo de categorías: vacía

    Preparar los datos

    El Reconocedor de gestos puede reconocer gestos en imágenes en cualquier formato compatible con el navegador anfitrión. La tarea también controla el procesamiento previo de la entrada de datos, lo que incluye el cambio de tamaño, la rotación y la normalización de valores. Para reconocer gestos en los videos, puedes usar la API para procesar rápidamente un fotograma a la vez, con la marca de tiempo del fotograma para determinar cuándo ocurren los gestos en el video.

    Ejecuta la tarea

    El reconocedor de gestos usa los métodos recognize() (con el modo de ejecución 'image') y recognizeForVideo() (con el modo de ejecución 'video') para activar inferencias. La tarea procesa los datos, intenta reconocer los gestos de la mano y, luego, informa los resultados.

    En el siguiente código, se muestra cómo ejecutar el procesamiento con el modelo de tareas:

    Imagen

    const image = document.getElementById("image") as HTMLImageElement;
    const gestureRecognitionResult = gestureRecognizer.recognize(image);

    Video

    await gestureRecognizer.setOptions({ runningMode: "video" });
    
    let lastVideoTime = -1;
    function renderLoop(): void {
      const video = document.getElementById("video");
    
      if (video.currentTime !== lastVideoTime) {
        const gestureRecognitionResult = gestureRecognizer.recognizeForVideo(video);
        processResult(gestureRecognitionResult);
        lastVideoTime = video.currentTime;
      }
    
      requestAnimationFrame(() => {
        renderLoop();
      });
    }

    Las llamadas a los métodos recognize() y recognizeForVideo() del reconocedor de gestos se ejecutan de forma síncrona y bloquean el subproceso de la interfaz de usuario. Si reconoces gestos en los fotogramas de video de la cámara de un dispositivo, cada reconocimiento bloqueará el subproceso principal. Para evitar esto, puedes implementar trabajadores web para ejecutar los métodos recognize() y recognizeForVideo() en otro subproceso.

    Para obtener una implementación más completa de la ejecución de una tarea del Reconocedor de gestos, consulta el ejemplo de código.

    Cómo controlar y mostrar los resultados

    El Gesto Recognizer genera un objeto de resultado de detección de gestos para cada ejecución de reconocimiento. El objeto resultante contiene puntos de referencia de la mano en coordenadas de imagen, puntos de referencia de la mano en coordenadas mundiales, lateralidad(mano izquierda o derecha) y categorías de gestos de la mano de las manos detectadas.

    A continuación, se muestra un ejemplo de los datos de resultado de esta tarea:

    El GestureRecognizerResult resultante contiene cuatro componentes, y cada componente es un array, en el que cada elemento contiene el resultado detectado de una sola mano detectada.

    • Lateralidad

      La mano dominante indica si las manos detectadas son izquierda o derecha.

    • Gestos

      Las categorías de gestos reconocidas de las manos detectadas.

    • Puntos de referencia

      Hay 21 puntos de referencia de la mano, cada uno compuesto por coordenadas x, y y z. Las coordenadas x y y se normalizan a [0.0, 1.0] según el ancho y la altura de la imagen, respectivamente. La coordenada z representa la profundidad del punto de referencia, y la profundidad en la muñeca es el origen. Cuanto menor sea el valor, más cerca estará el punto de referencia de la cámara. La magnitud de z usa aproximadamente la misma escala que x.

    • Monumentos universales

      Los 21 puntos de referencia de la mano también se presentan en coordenadas mundiales. Cada punto de referencia se compone de x, y y z, que representan coordenadas 3D del mundo real en metros con el origen en el centro geométrico de la mano.

    GestureRecognizerResult:
      Handedness:
        Categories #0:
          index        : 0
          score        : 0.98396
          categoryName : Left
      Gestures:
        Categories #0:
          score        : 0.76893
          categoryName : Thumb_Up
      Landmarks:
        Landmark #0:
          x            : 0.638852
          y            : 0.671197
          z            : -3.41E-7
        Landmark #1:
          x            : 0.634599
          y            : 0.536441
          z            : -0.06984
        ... (21 landmarks for a hand)
      WorldLandmarks:
        Landmark #0:
          x            : 0.067485
          y            : 0.031084
          z            : 0.055223
        Landmark #1:
          x            : 0.063209
          y            : -0.00382
          z            : 0.020920
        ... (21 world landmarks for a hand)
    

    En las siguientes imágenes, se muestra una visualización del resultado de la tarea:

    Una mano con el pulgar hacia arriba con la estructura esquelética de la mano mapeada

    Para obtener una implementación más completa de la creación de una tarea de Gesture Recognizer, consulta el ejemplo de código.